

IMPROVING THRESHING EFFICIENCY FOR RICE HARVESTING COMBINE

By

Mohamed Asraan Sultan Shayboub

B. Sc. in Agricultural Science, Faculty. Of Agriculture, Kafr Elsheakh Tanta University (1991)

THESIS

Submitted in Partial Fulfilment of the Requirements for Master Degree

> In AGRICULTURAL SCIENCES

(Agricultural Mechanization)

Agricultural Engineering Department Faculty of Agriculture Tanta University

2021

ABSTRACT

The experimental study was carried out at a private farm at, Delegate, Bohira Governorate during two agricultural seasons of 2017 and 2018. The threshing device in combine model CA385 was developed and manufactured from local material to be suitable for the harvesting operation under Egyptian conditions. The threshing device for the combine harvester was evaluated before and after development under different operating conditions(forward speed, grain moisture content and operating time,). un-threshing losses percentage, threshing efficiency, threshing capacity, fuel consumption, power requirements, energy requirements, device mass losses percent, specific wear, wearing rate, wearing resistance, critical wear, and device expected life. Were measured The results obtained showed that using modified secondary threshing drum at forward speed 3.5 km/h and grain moisture content 23%, led to an increase in threshing efficiency, wearing resistance, device expected life, and the critical wearing value from 99.6 to 99.7 % by an increase of .1%, from 3.33 to 4.54 hg^{-1} By an increase of 30%, from 57.7 to 105.9 h by an increase of 45%, and from 0.637 to 0.647 by an increase of 65%, before and after development, respectively As well as to a decrease in wearing rates, fuel consumption, energy consumed, and specific wear from 0.3 to 0.22 gh^{-1} by 26%, 4.7 to 4.4 L fed⁻¹ by 6%, 3.73 to 3.28 kW.h/ton by 12%, and 0.06 to 0.04 g/m^3 by 33%, before and after development respectively. The results also showed that the increase in operating time from 50 to 500 h led to a decrease in threshing efficiency, wearing resistance, and device expected life from 99.7 to 99.5 %, from 4.54 to 0.25 hg^{-1} , and from 105.9 to 5.8 h, as well as increasing wearing rate, fuel consumption, and energy consumption from 0.22 to 4 gh⁻¹, 4.4 to 7.0 L fed⁻¹ and 3.28 to 8.37 kW.h/ton respectively,

Contents

No.		Page
Ι	INTRODUCTION	1
II	REVIEW OF LITERATURE	3
II.1	Physical properties of rice	3
II.2	Types axial flow threshing unit	4
II.3	Development of rice harvesting machines	5
II.4	Combine performance	8
II.5	Grain losses	14
II.6	Power and fuel consumption for harvester combine	17
II.7	Wearing and device expected life	19
III	MATERIALS AND METHODS	22
Ш.1	. Experimental site and setup	22
Ш.1	MATERIAL	22
Ш.1.1	. Rice crop characteristics	22
Ш.1.2	Rice combine harvester	23
Ш.2	Methods	25
Ш.2. 1	Treatment under study	25
III.2.2	. Agricultural practices	25
Ш.2.3	Adjustment combine Requirements	26
Ш.2.3.2	Threshing unit	26
Ш.2.3.3	Separating unit	26
Ш.2.3.4	Cleaning unit	26
Ш.2.4	Development of secondary threshing drum	27
Ш.2.4.1	The Secondary threshing drum before modification	27
Ш.2.4.2	The Secondary threshing drum after modification	27
III. 3	Measurements	31
Ш.3.1	Threshing efficiency	31
Ш.3.2	Threshing capacity	31
Ш.3.3	Fuel consumption	31
Ш.3.4	Power required	31
Ш.3.5	Energy requirements (Er)	32
Ш.3.6	Wearing measurements.	32
Ш.3.6.1	Device mass loss	32
Ш.3.6.2	Wearing rate (Wr)	32
Ш.3.6.3	Wearing resistance	33
Ш.3.6.4	Critical wearing value	33
Ш.3.6.5	Specific wearing	33
Ш.3.6.6	Device expected life	33
Ш.3.6.7	Harvesting cost	34
IV	RESULTS AND DISCUSSION	37

IV.1	Effect of forward speed on rice combines	37
	performance	
IV.1.1	Un-threshing losses	37
IV.1.2	Threshing efficiency	38
IV.1.3	Fuel consumption	39
IV.1.4	Required power	40
IV 1.5	Specific energy required	41
IV.2	Effect of grain moisture content on rice combine performance	42
IV.2.1	Un-threshing losses	42
IV.2.2	Threshing efficiency	43
IV.2.3	Fuel consumption	44
IV.2.4	power requirement	45
IV.2.5	Specific energy required	46
IV. 3	Effect of operating time on rice combine	47
	performance	
IV.3.1	Un-threshing losses	47
IV.3.2	Threshing efficiency and threshing capacity	48
IV.3.3	Fuel consumption	49
IV.3.4	Required power and energy requirement	50
IV.3.5	Device mass losses percent	52
IV.3.6	Specific wear	53
IV.3.7	Wearing rate and wearing resistance	54
IV.3.8	Critical wear value	55
IV.3.9	Device expected life	56
IV.3.10	Cost analysis	57
V	SUMMARY AND CONCLUSIONS	60
VI	REFERENCES	70
VII.1	APPENDIX	75

LIST OF TABLES

No.	Table Name	Page
III.1	Characteristics of rice variety (Sakha 101)	22
III.2	Technical specifications of the combine harvester	23
III.3	Technical data of two different drum (developed drum	27
	and original drum) for rice crop.	
IV 3	Analysis of variance of threshing efficiency using the	57
	original secondary drum.	
IV4	Analysis of variance of threshing efficiency using the	58
	modified secondary drum.	
VII.1	Effect Grain moisture content and forward speed on Un-	75

	threshing losses	
VII.2	Effect Grain moisture content and forward speed on	75
	threshing efficiency.	
VII.3	Effect Grain moisture content and forward speed on Fuel	75
	consumption	
VII.4	Effect Grain moisture content and forward speed on fuel	76
	consumption, power requirement and energy requirement.	
VII.5	Effect operating time on threshing efficiency and un-	77
	threshing	
VII.6	Effect operating time on threshing capacity and un-	78
	threshing value.	
VII.7	Effect operating time on device mass losses, wearing rate,	79
	wearing resistance, and critical wearing value	
VII.8	Effect operating time on Weight, wearing rate and	80
	wearing resistance.	
VII.9	Effect operating time on specific wear, device expected	81
	life	

LIST OF FIGURES

No.	Title	Page
III.1	Rice crop (panicle- grain)	23
III.2	combined harvester	24
III.3	Threshing device before development	26
III.4	Threshing device after development.	27
IV.1	Effect of forward speed on Un-threshing losses before and after modification.	37
IV.2	Effect of forward speed on threshing efficiency before and after modification.	38
IV.3	Effect of forward speed on fuel consumption before and after modification.	39
IV.4	Effect of forward speed on required power before and after modification.	40
IV.5	Effect of forward speed on energy requirements before and after modification.	41
IV.6	Effect of grain moisture content Un-threshing losses before and after modification.	42

IV.7	Effect of grain moisture content on threshing efficiency	43
	before and after modification.	
IV.8	Effect of grain moisture content on fuel consumption	44
	before and after modification.	
IV.9	Effect of grain moisture content on power requirement	45
	before and after modification	
IV.10	Effect of grain moisture content on energy requirement	46
	before and after modification.	
IV.11	Effect operating time on Un-threshing losses before	48
	and after modification.	
IV.12	Effect of operating time on threshing efficiency before	49
	and after modification.	
IV.13	Effect of operating time on threshing capacity before	50
	and after modification.	
IV.14	Effect operating time on fuel consumption before and	51
	after modification.	
IV.15	Effect operating time power requirement before and	52
	after modification.	
IV.16	Effect operating time on energy requirement before and	53
	after modification.	
IV.17	Effect operating time on device mass losses present	54
	before and after modification.	
IV.18	Effect operating time on specific wear before and after	55
	modification.	
IV.19	Effect operating time on wearing rate before and after	56
	modification.	
IV.20	Effect operating time on wearing resistance before and	56
	after modification.	
IV.21	Effect operating time on critical wear value resistance	57

	before and after development before and after modification.	
IV.22	Effect of operating time on device's expected life before and after development before and after modification.	58
IV.23	Effect of operating time on operating cost before and after modification.	59

LIST OF SYMBOLS AND ABBREVIATIONS

D.	East concernent in a sufficient for the
Fc	Fuel consumption per feddan, L fed-1
Ci	Full tank capacity
Cc	Amount of remaining fuel in the tank after a specific period
Pr	Engine power, kW
Р	The density of fuel in kg/l(for gas oil = 0.85)
L.C.V	The lower calorific value of fuel in 11 k.cal/kg
η_{thb}	The thermal efficiency of the engine (35 % for diesel)
η_{m}	Mechanical efficiency of the engine (80% for diesel and 85% for Otto)
Er	Energy requirements ,kW.h/ton
Ар	Actual system productivity
W0	mass of the device before using and
W	mass of device after using
Wr	Wearing rate, gh-1
\ St	divided by the hardness of abrasion
At	1060 quarts hardness,
EL	Device expected life
W new	the weight of the new device, g.
Ww	the weight of the worm device after the expected wear, g.
TFC	Tangential flow threshing cylinder unit
VHN	Vickers hardness number
HI	Heavy Industry (18)
с	hourly cost, L.E
р	price of machine, L.E,
у	yearly working hours, h,
а	life expecting of the machine, year,
i	interest rate /year ratio,
Т	taxes, overheads ratio,