Kafrelsheikh University Faculty of Agriculture Agricultural Engineering Department Kafrelsheikh - Egypt

DEVLOPMENT OF A CHOPPING MACHINE FOR AGRICULTURAL RESIDUES

BY

WAEL MOHAMED IBRAHIM MOUSSA

B.Sc. in Agric. Science (Agric.Mechanization). Faculty of Agric., Kafrelsheikh University, 2001

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science

IN (AGRICULTURAL ENGINEERING)

DEPARTMENT OF AGRICULTURAL ENGINEERING

FACULTY OF AGRICULTURE

KAFRELSHEIKH UNIVERSITY

(2021)

Contents

Title	Page No.
1 – INTRODUCTION	1
2- REVIEW OF LITERATURE	3
2.1 Physical and mechanical properties of the plant residues	4
2.2 Flail shredders	6
2.3 Forage blower	10
2.4 Chopping lengths	13
2.5 Cutting efficiency	17
2.6 Machine productivity	17
2.7 Distribution of power requirements	19
2.8 Cost Analysis	24
2.9 Utilization of agricultural crop residues	24
2.9.1 Compost production	25
2.9.2 Animal feeding production	26
2.9.3 Energy production	27
2.9.4 Wood Manufacture	29
2.9.5 Unconventional bricks	29
3. MATERIALS AND METHODS	28
3.1 Materials	30
3.1.1 Star forage-chopper before modification	30
3.1.2 Star forage-chopper after modification (developed chopper)	30
3.1.2.1 Frame	30
3.1.2.2 Feeding unit	35
3.1.2.2.1 Feeding conveyor	35
3.1.2.1.2 Feeding rollers	38
3.1.2.3 Chopping unit	40

3.1.2.3.1. Chopper flywheel	41
3.1.2.3.2. Chopping knives	42
3.1.2.3.3. Chopping fixed-bar	43
3.1.2.4 Outlet ducts	44
3.1.2.5. Power transmission assembly	45
3.2 Instrumentations:	47
3.2.1 Speedometer (tachometer)	47
3.2.2 Clamp meter	47
3.2.3 Digital balances for measuring the chopped samples	48
3.2.4 Stop watch	48
3.2.5 Measuring tape	48
3.2.6 Laboratory oven	49
3.3 Methods	49
3.3.1 Studied factors	49
3.4 Measurements	51
3.4.1 Moisture content	51
3.4.2 Chopping length	52
3.4.3 Cutting efficiency	52
3.4.4 Machine productivity	53
3.4.5 Power requirement and specific energy	53
3.4.6 Estimating the costs of using of using the machines	54
3.4.7 Variable costs	55
4. RESULTS AND DISCUSSION	57
4.1 Effect of feed rate, knife speed and type on cut length of rice straw and cotton stalks	58
4.2 Effect of feed rate, knife speed and type on power required for cutting rice straw and cotton stalks	56
4.3. Effect of feed rate, knife speed and type on rice straw and cotton stalks cutting efficiency	60
4.4 Effect of feed rate, knife speed and type on rice straw and cotton stalks specific energy	62
4.5 Effect of different parameters on productivity, (ton/day)	65
4.6 Effect of different parameters on total operating costs, L.E. /day	66
	1

5 - SUMMARY AND CONCLUSION	68
6 – REFERENCES	73
APPENDIX A	82
ARABIC SUMMARY	1-4

List of Tables

Title	Page No.
Table 3-1: New cutter head knives' specifications	51
Table 3-2: Characteristics of used residual material	51
Table. 3.3: Purchase/ manufacturing price, trade- in value, economic life and hour per year of tillage systems on the study	55
Table 4-1: Rice straw and cotton stalks cutting efficiency and	64
calculated specific energy	

List of Figures

Title	Page No.
Fig. 2.1 A flail mower, (a) side view, and (b) flail detail	7
Fig. 2.2 Impeller-blower	12
Fig. 2.3 Distribution of power in a flywheel type field chopper	20
Fig. 3.1 photograph and isometric of the Star forage-chopper before modification	31
Fig. 3.2 Isometric and photograph of the rice-straw bales chopper after modification	32
Fig. 3.3 Views of the developed chopper	33
Fig. 3.4 Isometric and plane view of the frame of the developed chopper	33
Fig. 3.5 Views of the frame of the developed chopper	34
Fig. 3.6 Isometric of the feeding unit	35
Fig. 3.7 Photograph and isometric of the feeding conveyor.	36
Fig. 3.8 Views of the feeding conveyor	37
Fig. 3.9 Isometric of the feeding rollers	38
Fig. 3.10 Views of the feeding rollers	39
Fig. 3.11 Photograph and assembly view of the chopping unit	40
Fig. 3.12 Isometric and views of the chopper flywheel	41
Fig. 3.13 Isometric and views of the chopping knife	42
Fig. 3.14 Isometric and views of chopping fixed-bar	43
Fig. 3.15 Isometric of the outlet ducts	44
Fig. 3.16 Views of the outlet ducts	45
Fig. 3.17 Isometric of the power-transmission assembly	46
Fig. 3.18 Views of pulley of the power transmission assembly	46
Fig. 3.19 Photograph of the speedometer.	47
Fig. 3.20 Photograph of the clamp meter	47
Fig. 3.21 Photograph of the digital balance for measuring chopped samples	48
Fig. 3.22 Photograph of the stop watch	48

Fig. 3.23 Photograph of the measure tape	49
Fig 3.24 Photograph Laboratory oven	49
Fig. 3.25 Sketch of tested toothed and normal (flail) knives of chopping flywheel	50
Fig. 4.1 Effect of feed rate, knife speed and type on cut length of rice straw and cotton stalks.	59
Fig. 4.2 Effect of feed rate, knife speed and type on power required for cutting rice straw and cotton stalks	60
Fig. 4.3 Effect of feed rate, knife speed and type on cutting efficiency (%) at rice straw	61
Fig. 4.4 Effect of feed rate, knife speed and type on cutting efficiency (%) cotton stalks	61
Fig. 4.5 Effects of knife speed on specific energy at different feed rates, type knifes and rice straw	62
Fig. 4.6 Effects of knife speed on specific energy at different feed rates, type knifes and cotton stalks	63
Fig. 4.7 Effects of feed rate on theoretical productivity and actual productivity with rice straw and cotton stalk (ton/day)	65
Fig. 4.8 Effects of feed rate on total cost with rice straw and cotton stalk, L.E/day.	67
Fig. 4.9 Effects of feed rate on total operating costs and total income with rice straw and cotton stalk, L.E/day.	67

List of Abbreviation

Af:s: Frontal surface area. As:c: The cross-sectional of area. CAPMAS: Central Agency for Public Mobilization and Statistics. CF: Criterion Function Cost, LE/Mg. Cos Θ : Electrical power factor, decimal (being equal to 0.71) IE: Egyptian Pound. FAO: Food and Agriculture Organization. I: Current intensity, Amperes. L: Economic life of machine, year. L_b: The batch load, kg. M_{f.s.1}: The first squamous leaf mass, g.M_i: The initial sample mass, g. η: Mechanical efficiency of motor assumed to be 80% from data sheet. P: Manufacturing price of the machine, L.E. R_{peels} . The removed peels by the machine, %. SFCM: Star Forage Chopper Machine. T: The peeling residence time, min. T₁: The loading time, min. T_u: The unloading time, min. Tv: Trade-in value of the machine uc: unit cost, LE/Mg. V: Potential difference, Volts.

ABSTRACT

The increased of amount of different kinds of agricultural crops residues is considered as one of the problems which face both the farms and the environment. The cutting process of agricultural plants is more complicated than the cutting of engineering material (steel, copper, alloys etc.), due to the fact that plants are nonhomogeneous and non-isotropic materials. The scientists on all the world have thought to solve the problems, there problems have bad effect of the environment. Star Forage Chopper Machine (SFCM) was modified and tested to reduce the power required and to improve forage cutting efficiency, also, it will reduce the environmental and health impacts by replacing diesel-based farm machines with electrically operated ones. Power transmission assembly, rotating cutter head knives and straw outlet position were modified, and newly constructed feed rollers were added and positioned to control plant material to be chopped. The performance of SFCM was evaluated based on its ability to chop rice straw and cotton stalks under three different feed rates 0.8, 1.2 and 1.5 t/h four different knife speed, 78.6 (750), 91.1 (1000), 115.2 (1250) and 136.2 (1500) m/s (rpm). Minimum cut lengths were 1.35 and 1.27cm for rice straw and were achieved by using the highest feeding rate of 1.5t/h with the maximum of knife speed 136.2 \m/s with using toothed blades and normal (flail) blades respectively. At higher feed rates, either power required to cut rice straw or cotton stalks increased with increasing knife speed under the two types of new knifes. Minimum power required to cut rice straw were 1.81 and 1.76kW and were achieved by using feeding rate of 0.8t/h with knife speed of 78.6m/s for toothed blades and normal (flail) blades respectively. Rice straw and cotton stalks cutting efficiency decreased with increasing feeding rates and increased with increasing knife speeds. Specific energy for cutting rice straw and cotton stalks decreased with increasing feeding rates and decreased also with increasing knife speeds.