

Benha University Faculty of Veterinary Medicine Dept. of Bacteriology, Immunology and Mycology

BACTERIOLOGICAL AND MOLECULAR STUDIES ON SOME BACTERIA CAUSING MORTALITY IN FISHES

A Thesis Submitted By

Mennat- Allah Abd El-Naby Elsayed Refaey

B.V.Sc., Faculty of Vet. Med. (Kafrelsheikh University, 2011) M.V. Sc., (Kafrelsheikh University, 2017)

Under Supervision

Prof. Dr. Ashraf Awaad Abd El-Tawab

Prof. and Head of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Benha University

Prof. Dr. Fatma Ibrahim Elhofy

Emeritus prof. of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Benha University

Prof. Dr. Gamal Ragab Hasb El-Naby

Chief Researcher Bacteriology Department Animal Health Research Institute (Tanta Branch)

Thesis Submitted to Faculty of Veterinary Medicine-Benha University for Ph.D. Degree in Veterinary medical Science (Bacteriology, Immunology and Mycology)

2021

Contents

Subject	Page No.
1. Introduction	
2. Review of literature	5
2.1. Prevalence of <i>Vibrio</i> species infection in some fishes	
2.2. The in vitro sensitivity of <i>Vibrio</i> species	
2.3. Virulence factors of <i>Vibrio</i> species	
2.4. Antibiotic resistance genes of <i>Vibrio</i> species	22
2.5. Prevalence of <i>Aeromonas</i> species infection in some fishes	23
2.6. The in vitro sensitivity of <i>Aeromonas</i> species	26
2.7. Virulence factors of <i>Aeromonas</i> species	
2.8. Antibiotic resistance genes of <i>Aeromonas</i> species	35
3. Material and Methods	
4. Results	
5. Discussion	89
6. Conclusion	98
7. Summary	99
8. References	102
و الملخص العربي	

List of tables

Table	Page No.
Table (1): Oligonucleotide primers sequences encoding forvirulence and antibiotic-resistant genes of Vibrio and Aeromonasspecies.	44
Table (2): The number of samples from diseased fishes.	48
Table (3): Antimicrobial standardized discs, concentrations, andinterpretation of their effect (Oxoid) according to Clinical andLaboratory Standards Institute (CLSI, 2016).	52
Table(4): Components of PCR Master Mix	54
Table(5): Cycling conditions of the different primersduring thePCR	55
Table(6): Prevalence of positive samples for Vibrio species isolation among examined fishes	58
Table (7): Prevalence of <i>Vibrio</i> species isolated from examined fishes	60
Table (8):Distribution of Vibrio species isolated from examined samples	61
Table (9): Prevalence of positive samples for Aeromonas species isolation among examined fishes	62
Table (10): Prevalence of Aeromonas species isolated from examined fishes	64
Table (11): Distribution of Aeromonas species isolated from examined samples	65
Table (12): Biochemical reactions of Vibrio and Aeromonasspecies isolated in this study.	68
Table (13): In-Vitro antibiotic sensitivity test for isolated V. parahemolyticus strains.	69
Table (14): In-Vitro antibiotic sensitivity test for isolated V. alginolyticus strains	71
Table (15): In-Vitro antibiotic sensitivity test for isolated V. cholerae strains	72

Table (16): Multiple antibiotic resistance indexes (MAR) of <i>Vibrio</i> species	73
Table (17): In-Vitro antibiotic sensitivity test for isolated A. <i>hydrophila</i> strains	74
Table (18): In-Vitro antibiotic sensitivity test for isolated A.caviae strains	76
Table (19): Multiple antibiotic resistance indexes (MAR) of Aeromonas species	77
Table (20): The results of PCR amplification of different usedgenes of V. parahaemolyticus strains	79
Table (21): The results of PCR amplification of different usedgenes of A. hydrophila strains	
Table (22): Types and distribution of virulence genes andAntibiotic resistance genes in A. hydrophila strains	82

List of figures

Figure	Page No.
Figure (1): Prevalence of positive samples for Vibrio species	59
isolation among examined fishes.	
Figure (2): Prevalence of <i>Vibrio</i> species isolated from examined	
fishes.	60
Figure (3): Prevalence of <i>Vibrio</i> species isolated from examined	
lesion samples.	61
Figure (4): Prevalence of positive samples for <i>Aeromonas</i> species	
isolation among examined fishes.	63
Figure (5): Prevalence of Aeromonas species isolated from	
examined fishes.	64
Figure (6): Prevalence of Aeromonas species isolated from	
examined lesion samples.	65
Figure (7): In-Vitro antibiotic sensitivity test for isolated V.	
parahaemolyticus strains.	70
Figure (8): In-Vitro antibiotic sensitivity test for isolated V.	
alginolyticus strains	71
Figure (9): In-Vitro antibiotic sensitivity test for isolated V.	= 2
cholerae strains.	73
Figure (10): In-Vitro antibiotic sensitivity test for isolated A.	
hydrophila strains.	75
Figure (11): In-Vitro antibiotic sensitivity test for isolated A.	
caviae strains.	76
Figure (12): PCR amplification of <i>tox</i> R gene (<i>V</i> .	
parahaemolyticus) and collagenase gene (V. alginolyticus) on	78
agarose gel 1.5%.	

Figure (13): PCR amplification of <i>rec</i> A and <i>trh</i> genes of <i>V</i> . <i>parahaemolyticus</i> on agarose gel 1.5%.	
Figure (14): PCR amplification of Aerolysin (<i>aerA</i>) gene and	02
hemolysin ($hlyA$) on agarose gel 1.5%.	83
Figure (15): PCR amplification of <i>fla</i> and <i>ahcytoen</i> genes on	
agarose gel 1 %.	84
Figure (16): PCR amplification of <i>bla</i> TEM resistance gene of <i>A</i> .	
hydrophila and V. parahaemolyticus on agarose gel 1.5%.	85
Figure (17): PCR amplification of <i>aad</i> 1 resistance gene of <i>A</i> .	
hydrophila and V. parahemolyticus on agarose gel 1.5%.	86
Figure (18): PCR amplification of <i>tet</i> A (A) resistance gene of A.	
hydrophila and V. parahaemolyticus on agarose gel 1.5%.	87
Figure (19): PCR amplification of <i>mcr</i> 1 resistance gene of <i>A</i> .	
hydrophila and V. parahaemolyticus on agarose gel 1.5%.	88

List of abbreviations

Abbreviation	Meaning
aadA1	Streptomycin resistant gene.
AerA	Aerolysin gene
Act	cytotoxic heat- labile enterotoxin
alt	cytotonic heat-labile enterotoxin
AML	amoxicillin
ARGs	Antimicrobial resistance genes
Asp	Alkaline serine protease
Ast	cytotonic heat- stable enterotoxin
Ahcytoen	A. hydrophila cytolytic enterotoxin gene.
<i>bla</i> TEM	β-lactamase ampicillin resistance gene
BSIBG	Bile salts Irgasan brilliant green agar
CIP	ciprofloxacin
СТ	Colistin sulphate
СТХ	cefotaxime
ctxA	Cholera toxin A- subunit
EUS	epizootic ulcerative syndrome
GEN	gentamycin
gyrA	DNA gyrase, subunit A gene
hlyA	Haemolysin toxin
MAS	Motile Aeromonas Septicemia
Mcr-1	Polymyxin resistant gene
omp	outer membrane proteins
PCR	Polymerase Chain Reaction
recA	Recombinase gene
RFLP	restriction fragment length polymorphism
rpoA	RNA Polymerase alpha gene
R–S media	Rimler – Shotts agar medium
S	streptomycin

sul1	Sulphonamides resistant gene.
TE	tetracycline
tetA	Tetracycline resistant A gene.
T.C.B.S	Thiosulphate –citrate –bile salts –sucrose agar
tdh	Thermostable direct hemolysin gene
toxR	Cholera toxin transcriptional activator gene
trh	Tdh –related hemolysin
TSA	Tripticase Soy agar
TSI	Triple sugar iron agar
vvha	Cytolysin hemolysin

7. SUMMARY

Vibrio and *Aeromonas* species are responsible for wide range spectrum of diseases among fish, leading to high mortalities and high economic losses, beside their role in gastrointestinal and extra intestinal infections in humans. Therefore, the present study was performed on 100 diseased fishes, 50 Nile tilapia (*O. niloticus*) and 50 mullet fish (*M. cephalus*), of various sizes were collected from different fish farms at Kafr El-sheikh Governorate during the period from January to October (2019) for determination the prevalence of *Vibrio* and *Aeromonas* infection and phenotypic characterization and detection of some virulence genes in some isolated strains. Samples were taken from apparently pathgnomic lesions in liver, kidneys, spleen, heart, anterior intestine, and gills of these fishes after clinical and postmortem examination.

The results of bacteriological examination revealed that, the prevalence of *Vibrio* infection with *Vibrio* species isolation were, 65 out of 100examined fishes (65%). A total of 36 *V. parahaemolyticus* strains (55.4%) were isolated and identified, 20 (30.76%) from *O. niloticus*, and 16 (24.6%) from *M. cephalus*. Meanwhile, 22 *V. alginolyticus* strains (33.8%) were isolated, 13 (20.0%) from *O. niloticus*, and 9 (13.8%) from *M. cephalus* fish. Besides 7 *V. cholera* strains (10.8%) were isolated, 5 (7.7%) from *O. niloticus*, and 2 (3.1%) from *M. cephalus*. Vibrio parahaemolyticus was isolated from liver, kidneys, spleen, heart, intestine, and gills with a prevalence of 30.5(11/36), 16.7(6/36), 11.1(4/36), (3/36) 8.3, 2.8(1/36) and 30.5% (11/36), respectively.

A total of 72 *Aeromonas* species were isolated and identified. Sixty five *A. hydrophila* strains (90.3 %) were isolated, 26 (36.1%) from *O. niloticus* and 39(54.2%) from *M. cephalus*. Meanwhile, 7 *A. caviae* strains (9.7 %) were isolated, 1 (1.4%) from *O. niloticus* and 6 (8.3%)

from *M. cephalus. Aeromonas* species detected in the liver, kidney, spleen, heart, intestine, and gills with a prevalence of 32.3(21/65), 27.7(18/65), 6.2(4/65), 17.0(11/65), 6.2(4/65) and 10.8% (7/65), respectively.

The in-vitro sensitivity tests for the isolated *V. parahaemolyticus* strains (n=36) showed high resistance for amoxicillin 91.7% and colistin 63.9% followed by cefotaxime 58.3% and streptomycin 52.7%. The isolated *Vibrio alginolyticus* were highly resistant to streptomycin (86.4%) and amoxicillin (72.8%) followed by colistin (68.2%) and cefotaxime (59.1%). The isolated *Vibrio cholerae* were highly resistant for amoxicillin (85.7%), colistin, and streptomycin (71.4% for each) followed by cefotaxime (57.1%).

The sensitivity tests for the isolated *A. hydrophila* revealed that the isolated *A. hydrophila* (n= 65) were highly resistant for amoxicillin 100.0% and tetracycline 87.7% followed by streptomycin 63.1%, cefotaxime 57.0% and colistin sulfate 54.0%. The isolated *A. caviae* were highly resistant for amoxicillin (100.0%) and tetracycline (85.7%) followed by cefotaxime (71.4%), streptomycin, and colistin (57.1% for each).

The molecular screening of 5 *Vibrio* species isolates using speciesspecific PCR (for *V. parahaemolyticus* (*tox***R** gene) and for *V. alginolyticus* (**collagenase** gene)), all five isolates were identified as *V. parahaemolyticus*. On the other hand, no *V. alginolyticus* isolates were identified. In addition, PCR results showed the *rec***A** virulence gene was detected in three out of five random isolated *V. parahaemolyticus*. Meanwhile, the *trh* virulence gene was not detected in any of the tested 5 *V. parahaemolyticus* isolates. Also, five randomly selected *A. hydrophila* isolates were submitted for the screening of virulence genes by PCR.

Results revealed that *aerA* and *hlyA* virulence genes were detected in all five random isolated A. hydrophila. Meanwhile, Ahcytoen was detected in 4 out of 5 A. hydrophila studied strains and *fla* virulence gene was detected in 1 out of 5 A. hydrophila isolates. Five random isolates from each V. parahaemolyticus and A. hydrophila were subjected to PCR amplification targeting the antimicrobial resistance determinants β -(blaTEM), lactamase tetracycline resistance (tetA (A)), and aminoglycosides (aada1) and polymyxin resistant (mcr1) genes which were amplified in all five tested A. hydrophila and all five V. parahaemolyticus studied strains.