

Chemistry Department

Faculty of Science

Eco-friendly synthesis of silver nanoparticles using extracts of some medicinal plants and their different applications

A Thesis

Submitted to the Chemistry Department, Faculty of Science, Sohag University

> For the degree of PhD in Science Chemistry (Non-Organic Chemistry)

> > By

Mallak Megalea Zikry Mekhail

B.Sc. Chemistry, Faculty of Science, Sohag University 2009M.Sc. Chemistry, Faculty of Science, Sohag University 2016

Supervised by

Prof. Dr. Laila Hamdan Abdel-Rahman Professor of Inorganic Chemistry, Faculty of Science, Sohag University, Sohag, Egypt

Prof. Dr. Mohamed Abdel-Kawy Abdel-Sayed

Professor of Medicinal and Aromatic plants, Horticulture Research Institute, Agriculture Research center, Giza, Egypt Prof. Ass. Ahmed Mohammed Abu-Dief

Assistant Professor of Inorganic Chemistry, Faculty of Science, Sohag University, Sohag, Egypt

Chemistry Department, Faculty of Science, Sohag University, Egypt 2021

Abstract

Abstract:

It is well known that silver nanoparticles is a powerful antimicrobial agent with low toxicity, and it has several application in the treatment of burn wounds. The green method was employed to synthesis silver nanoparticles (AgNPs) using medicinal plant extracts such as Flamboyant (*Delonix regia* (DRE)) and *Moringa oleifera* (MOE) on reducing of Ag⁺ ions to Ag⁰, then silver nanoparticles (AgNPs) formation to produce (DREAgNPs) and (MOEAgNPs), respectively. The significance of some synthesis conditions such as: silver nitrate concentration, concentration of the plant extract, time of synthesis reaction, temperature and pH on the particle size of synthesized silver nanoparticles was investigated and optimized. The results of this investigation showed that the optimum conditions of the studied green synthesis process are defined as: 2 mM silver ions concentration, reaction time of 24 hour, pH = 7 and 60 °C temperature. The synthesized AgNPs were characterized using FT-IR, XRD, TEM, HR-TEM, DLS and UV/visible Spectrophotometry. XRD pattern of AgNPs has a face-centered cubic (FCC) form and crystalline lattice as shown by the peak values at 20 of 38.12°, 44.3°, 64.45° and 77.42° corresponding to (111), (200), (220), and (311) reflections of the Bragg structure of AgNPs. Based on the transmission electron microscopy image analyses (TEM), size, shape and morphology of the silver nanoparticles were studied. TEM confirmed the formation of spherical AgNPs with particle size range of 5 -55 nm. The HR-TEM images illustrate the highly crystalline behavior of these nano systems. FT-IR spectra indicate the functional groups of phytochemical compounds at *Delonix regia* extract DRE, DREAgNPs, *Moringa oleifera* (MOE) extract and MOEAgNPs. DLS showed the distribution of average particle size of AgNPs. The synthesized AgNPs were characterized using a UV/visible spectrophotometry, with maximum absorbance at 450 and 440 nm at (DREAgNPs) and (MOEAgNPs), respectively. Moreover, the prepared AgNPs were screened for their cytotoxic effect against colon carcinoma cells (HCT-116 cell line), hepatic carcinoma cells (HepG-2 cell line) and breast carcinoma cells (MCF-7 cell line). The cytotoxic effect (IC₅₀) of DREAgNPs against (HCT-116), (HepG-2) and (MCF-7)

Abstract

cell line were 6.2, 4.35 and 5.12, respectively and the cytotoxic effect (IC₅₀) of MOEAgNPs against (HCT- 116), (HepG-2) and (MCF-7) cell line were 6.51, 4.75 and 5.54 µg/ml, respectively, these results were compared with the cytotoxic effect (IC_{50}) of Doxorubicin standard drug (5.25, 4.25 and 4.45 µg/ml), respectively. The cytotoxic effect of AgNPs is close to the cytotoxic effect of Doxorubicin standard drug. HepG-2 cell line more sensitive as cell proliferation was inhibited by DREAgNPs and MOEAgNPs with an IC₅₀ value were 4.75 and 4.25 μ g/ml, respectively. Moreover, the toxicity of the AgNPs was tested against bacterial species such as Gm (+) positive bacteria (Bacillus subtilis) and Gm (-) negative bacteria (Serrati amarcescence and Escherichia coli) and fungal species such as Candida albicans, Geotrichm candidum and Aspergillus flavus, the antimicrobial activity of AgNPs was greater towards Gm (+) positive bacteria compared to Gm (-) negative bacteria. The DREAgNPs and MOEAgNPs showed antibacterial activities close to Ofloxacin standard drug and antifungal activities close to Fluconazole standard drug. In addition, the ability of the prepared AgNPs as a pesticide towards Spodoptera littorals was screened. The highest pupal mortality was recorded in group A (45.28%), insignificantly followed by groups F (40.93%) and B (36.00%). The ability of the synthesized AgNPs as a catalyst for NaBH₄ reduction of 2,4-Dinitrophenol (2,4-DNP) to 2,4-Diaminophenol (2,4-DAP) under mild reaction conditions was studied. In case of MOEAgNPs as catalyst, new peaks appeared at 294 and 450 nm indicated the formation of 2,4-Dinitrophenolate ion and 2,4-Diaminophenol in the reaction solution. As 2,4-Dinitrophenolate intermediate transformed into 2,4-Diaminophenol, new small characteristic band around 316 nm was formed and the absorption bands of the 2,4-Dinitrophenolate ion was decreased and spectrum became stable indicating the formation of 2,4-Diaminophenol in the reaction solution. In case of DREAgNPs as catalyst, new peaks appeared at 288 and 422 nm indicated the formation of 2,4-Dinitrophenolate ion and 2,4-Diaminophenol in the reaction solution. As 2,4-Dinitrophenolate intermediate transformed into 2,4-Diaminophenol, new small characteristic band around 312 nm was formed and the absorption bands of the 2,4-Dinitrophenolate ion was decreased and spectrum became stable indicating the formation of 2,4-Diaminophenol in the reaction solution.

Abstract

Thermodynamic parameters such as (ΔH^*) , (ΔS^*) and ΔG^* (Gibb's free energy) for the reduction of 2,4-Dinitrophenol were 34.1 kJ mol⁻¹, -157.5 J mol⁻¹K⁻¹ and 81.02 kJ mol⁻¹, respectively for MOEAgNPs catalyst, also (ΔH^*), (ΔS^*) and ΔG^* (Gibb's free energy) for the reduction of 2,4-Dinitrophenol were 29.2 kJ mol⁻¹, $-177.02 \text{ J mol}^{-1}\text{K}^{-1}$ and 82.01 kJ mol⁻¹, respectively for DREAgNPs catalyst. This reaction will not proceed spontaneously at any temperature since $(\Delta H^*) > 0$ and $(\Delta S^*) < 0$. The opposite reaction, however, is kinetically inhibited. The negative value of (ΔS^*) indicate the decrease in randomness. The 2,4-DNP reduction process is clearly endothermic. The Cu^{2+} ions adsorption process was studied by (AgNPs). The Cu^{2+} ions removal efficiency (R. E.) is 88.4 % at initial concentration 15 ppm. Removal efficiency (R. E.) decreases as the Cu^{2+} ions concentration increases. As the increase in adsorbent dosage, the metal ions removal efficiency increases. Cu²⁺ ions removal efficiency was lowest value (74.4 %) obtained with 25 mg and highest value (88.4 %) with 300 mg of AgNPs adsorbent. The R. E. % was very low 67.66 % when a larger particle size (500 nm) was used, and this was probably due to smaller surface area of the adsorbent. It was observed that the R. E. % was higher (88.4 %) when smaller particle nano size (20 nm) was used. The Cu^{2+} ions removal efficiency increased with an increase in a contact time. The Cu²⁺ ions removal efficiency at different initial concentrations (15, 30, 50 mg/L) by AgNPs increases while the temperature is increasing until a certain value that varies around 40 °C. Furthermore, thermodynamic studies confirmed that the biosorption process was endothermic and the positive value of ΔG^* is quite common when an ion-exchange mechanism applies in the biosorption. The Positive value of ΔS^* suggested an increase in randomness during the biosorption. The Freundlich isotherm has a good fit with the experimental data ($R^2 = 0.99$) compared to Langmuir isotherm ($R^2 = 0.90$). This study shows that AgNPs are available, low cost, effective and environment friendly bio sorbent for the removal of Cu²⁺ ions from aqueous environment. These activities of the synthesized AgNPs could be promised to use it as adsorbent for the heavy metals, catalyst, pesticide, antimicrobial and anticancer agent in medical applications.

Contents	Page
List of Tables	Ι
List of Figures	III
List of Abbreviation	VII
Aim of the work	IX
Abstract	X
1. Introduction	1
1. 1. Theoretical background	1
1. 1.1. Nanoparticles	1
1. 1. 2. Silver nanoparticles (AgNPs)	2
1. 1. 3. Methods for Synthesis of silver nanoparticles	5
1. 1. 3. 1. Physical synthesis of AgNPs	5
1. 1. 3. 2. Chemical synthesis of AgNPs.	6
1. 1. 3. 3. Biological synthesis of AgNPs	12
1. 1. 3. 3.1. Biological synthesis of AgNPs Fungi and bacteria.	13
1. 1. 3. 3. 2. Biological synthesis of AgNPs From plants.	18
1.1. 3. 4. Medicinal plants leaf extract for the green synthesis of silver nanoparticles.	24
1. 1. 3. 4. 1. Medicinal plants (<i>Moringa oleifera</i> and <i>Delonix regia</i>)	26
1. 1. 3. 4. 1. 1. Moringa oleifera	26
1. 1. 3. 4. 1. 2. Delonix regia	31
1. 1. 4. Applications of silver nanoparticles	34
1. 1. 5. Modes of toxicity of silver nanoparticles	43
1.1. 6. Mechanism of antimicrobial activity using silver nanoparticles	44
1. 2. Literature survey on synthesis of silver nanoparticles using plants	45
1. 2. 1. Synthesis of silver nanoparticles using plant extracts, characterization and its	45
different application	

2. Materials and methods	63
2. 1. Materials	63
2. 1. 1. Plant collection	63
2. 1. 2. <i>Delonix regia and Moringa oleifera</i> extract preparation	64
2. 2. Methods	64
2. 2. 1. Preparation of aqueous solution of Ag^+ ions	64
2. 2. 2. Synthesis of DREAgNPs and MOEAgNPs	64
2. 2. 3. Optimization of green synthesis of silver nanoparticles by aqueous extract	68
2. 3 Structural investigation of DREAgNPs and MOEAgNPs via different techniques	69
2. 4. Characterization of the silver nanoparticles	70
2. 4.1. UV/ vis spectroscopy	70
2. 4. 2. FT-IR analysis	71
2. 4. 3. X-ray diffraction	71
2. 4. 4. Dynamic Light Scattering (DLS)	71
2. 4. 5. TEM analysis	72
2. 5. Biological application protocols	72
2. 5. 1. Cytotoxic effect of DREAgNPs and MOEAgNPs against carcinoma cells	72
2. 5. 2. Antimicrobial activity of DREAgNPs and MOEAgNPs.	73
2. 5. 3. Pesticidal activity of AgNPs.	74
2. 6. The catalytic Reduction of 2,4-Dinitrophenol using AgNPs	75
2. 7. Adsorption experiments	76
2. 7. 1. Effect of initial metal ions concentration	76
2. 7. 2. Effect of biosorbent (AgNPs) dosage	76
2. 7. 3. Effect of particle size of AgNPs	77
2. 7. 4. Effect of contact time.	77

2. 7. 5. Effect of temperature	77
2. 7. 6. Calculation of Cu^{2+} ions absorption.	78
3. Results and discussion	79
3. 1. Characterization of the synthesized AgNPs	79
3. 1. 1. UV/visible spectral analysis	79
3. 1. 2. FT-IR analysis	85
3. 1. 3. XRD analysis	91
3. 1. 4. Dynamic light scattering (DLS)	94
3. 1. 5. TEM analysis	95
3. 1. 6. Optimization of green synthesis of silver nanoparticles by aqueous extract	99
3. 1.7. Biosynthesis mechanism of AgNPs	115
3. 2. Biological activity of AgNPs	117
3. 2.1. Cytotoxic effect of AgNPs against human carcinoma cells	117
3. 2. 2. Antimicrobial effect of the synthesized AgNPs against microorganisms	126
3. 2. 3. Pesticidal activity of MOE AgNPs	141
3. 2. 3.1. Larval mortality	141
<i>3. 2. 3. 2. Pupae and adults</i>	142
3. 2. 4. Application of AgNPs in catalytic reduction of 2, 4-Dinitrophenol.	147
3. 2. 5. Adsorption of Cu ²⁺ ions by silver nanoparticles (AgNPs)	169
3. 2. 5. 1. FT-IR analysis (DREAgNP-Cu).	170
3. 2. 5. 2. Effect of Cu^{2+} ions concentration on the bio-sorption of Cu^{2+} ions	173
3. 2. 5. 3. Effect of adsorbent dosage (AgNPs) on the biosorption of Cu^{2+} ion	175
3. 2. 5. 4. Effect of adsorbent particles size (AgNPs) on biosorption efficiency	177
3. 2. 5. 5. Effect of contact time on the biosorption of Cu^{2+} ion by adsorbent AgNPs	179
3. 2. 5. 6. Effect of temperature on the biosorption of Cu^{2+} ions by adsorbent AgNPs.	181
3. 2. 5. 7 Thermodynamic studies of adsorption process	183

3. 2. 5. 8 . Kinetic studies on the biosorption of the investigated metal ions on	
biosorbents	
3. 2. 5. 9. Mechanism of adsorption	195
4. References	199
5. English summary	246
6. Arabic summary	1

•

List of Figures

List of Figures

Figure	Caption	page
Fig. 1	UV/ vis. spectra of DRE and DREAgNPs.	80
Fig. 2	UV/ vis spectra of MOE and MOEAgNPs.	80
Fig. 3	FT-IR spectra of DRE and DREAgNPs.	89
Fig. 4	FT-IR spectra of MOE and MOEAgNPs.	90
Fig. 5	XRD pattern of synthesized DREAgNPs	93
Fig. 6	XRD pattern of synthesized MOEAgNPs.	93
Fig. 7	The particles size distribution of MOEAgNPs.	94
Fig. 8	The particles size distribution of DREAgNPs.	95
Fig. 9 a, b	Surface morphology of synthesized MOEAgNPs and DREAgNPs by	96
Fig. 9 c, d,	TEM. Particle Size distribution of MOEAgNPs and DREAgNPs.	
Fig. 9 e, f	High resolution transmission electron microscopy (HR-TEM) micrographs	102
	of AgNPs.	
Fig. 10 a,b	Average effects of the investigated parameters on the size of silver particles:	103
	(a) Plant mass, (b) Silver ion concentration.	
Fig. 10c, d	Average effects of the investigated parameters on the size of silver particles:	104
	(c) Reaction time, and (d) Temperature.	
Fig. 11	The particles size distribution of AgNPs a (55nm), b (85nm), c (10nm),d(107nm)	105
	e (109 nm), f (112 nm), g (125 nm), h (133 nm).	106
Fig. 12 a	Absorption spectra of silver nanoparticles (AgNPs) synthesized using 10	108
	mL of aqueous extract of plant with different concentrations of AgNO ₃	
	(0.5, 1, 1.5, 2 and 3 mM) at pH 7, 60 \pm 2 °C temperature for 60 min.	
Fig. 12b	Absorption spectra of synthesized AgNPs prepared using 2 mM AgNO ₃	109
	solution with different concentrations of aqueous leaf extract (5, 10 and 15	
	mL) at pH 7 and 60 \pm 2 °C temperature for 60 min.	
Fig. 12 c	Absorption spectra of synthesized AgNPs (2 mM AgNO ₃ solution, 10 mL	111
	leaf extract, 60 \pm 2 °C temperature at pH 7) at different time intervals (0, 6,	

	12, 18, and 180 min.	
Fig. 12 d	Absorption spectra of AgNP (2 mM AgNO ₃ solution, 10 mL leaf extract at	112
	pH 7 for 60 min) obtained at different reaction temperatures (20, 30, 40,	
	and 70 °C).	
Fig. 12 e	Absorption spectra of AgNP (2 mM AgNO ₃ solution, 10 mL leaf extract at	115
	60 ± 2 °C temperature for 60 min) recorder at different pH values (3, 5, 7, 9	
	and 11).	
Fig. 13	IC_{50} values of DREAgNPs against human Colon carcinoma cells (HCT-116	121
	cell line), hepatic cellular carcinoma cells (HepG-2) and breast carcinoma	
	cells (MCF-7).	
Fig. 14	IC_{50} values of MOEAgNPs against human Colon carcinoma cells (HCT-116	122
0	cell line), hepatic cellular carcinoma cells (HepG-2) and breast carcinoma	
	cells (MCF-7).	
Fig. 15	Anti-microbial evaluation of the investigated DREAgNPs against Bacillus	133
	subtilis bacteria and Geotrichum Candidum Fungi.	
Fig. 16	Antibacterial activity evaluation of the investigated MOEAgNPs compared	134
	to Vancomycin against different strains of bacteria.	
Fig. 17	The effects of the synthesized MOEAgNPs on S. littoralis larval mortality.	145
Fig. 18	The effects of the synthesized MOEAgNPs on pupal malformation and	146
	mortality of S. littoralis.	
Fig. 19	The effects of the synthesized MOE AgNPs on adult emergence and	146
	malformation of S. littoralis.	
Fig. 20	Time-dependent absorption spectrum for the reduction of 2,4-DNP with	150
	NaBH ₄ in the absence of Silver nanoparticles.	
Fig. 21 a,b	Absorption spectra of the catalytic reduction of 2,4-Dinitrophenol to the	151
	corresponding 2,4-Diaminophenol by NaBH ₄ catalyzes by MOEAgNPs	
	(a) at first 36 min, (b) at next 78 min.	
Fig. 22	Absorption spectra of the catalytic reduction of 2,4-Dinitrophenol to the	152

List of Figures

corresponding 2,4-Diaminophenol by NaBH ₄ catalyzes by DREAgNPs	
(a) at first 40 min, (b) at next 96 min.	
In [2,4-DNP] versus time plots using no catalyst for the reduction of 2,4-	155
DNP carried out at 25 °C.	
In [2,4-DNP] versus time plots using silver nanoparticles MOEAgNPs as	155
catalysts for the reduction of 2,4-DNP carried out at 25 °C.	
In [2,4-DNP] versus time plots using silver nanoparticles DREAgNPs as	156
catalysts for the reduction of 2,4-DNP carried out at 25 °C.	
UV/vis spectra of the catalytic reduction of 2,4-Dinitrophenol to the	159
corresponding 2,4-Diaminophenol by NaBH ₄ catalyzes by MOE AgNPs in	
the second cycle.	
In [2,4-DNP] versus time plots using silver nanoparticles MOEAgNPs as	159
catalysts for the reduction of 2,4-DNP carried out at 25 °C in the second	
cycle.	
UV/vis spectra of the catalytic reduction of 2,4-Dinitrophenol to the	160
corresponding 2,4-Diaminophenol by NaBH4 catalyzes by DRE AgNPs in	
the second cycle.	
In [2,4-DNP] versus time plots using silver nanoparticles DREAgNPs as	160
catalysts for the reduction of 2,4-DNP carried out at 25 °C in the second	
cycle.	
Effect of temperature from 293 to 313 K on the k values of reduction	163
reaction of 2,4-Dinitrophenol catalyzed by MOEAgNPs.	
Effect of temperature from 293 to 313 K on the k values of reduction	163
reaction of 2,4-Dinitrophenol catalyzed by DREAgNPs.	
The Arrhenius plots of ln k vs. 1/T for the reduction reaction of 2,4-	164
Dinitrophenol with NaBH ₄ at different temperature catalyzed by (a)	
MOEAgNPs, (b) DREAgNPs.	
The Eyring plots of ln k/T vs. 1/T for the reduction reaction of 2,4-	166
Dinitrophenol with NaBH ₄ at different temperature catalyzed by (a)	
	corresponding 2,4-Diaminophenol by NaBH ₄ catalyzes by DREAgNPs (a) at first 40 min, (b) at next 96 min. In [2,4-DNP] versus time plots using no catalyst for the reduction of 2,4- DNP carried out at 25 °C. In [2,4-DNP] versus time plots using silver nanoparticles MOEAgNPs as catalysts for the reduction of 2,4-DNP carried out at 25 °C. In [2,4-DNP] versus time plots using silver nanoparticles DREAgNPs as catalysts for the reduction of 2,4-DNP carried out at 25 °C. UV/vis spectra of the catalytic reduction of 2,4-Dinitrophenol to the corresponding 2,4-Diaminophenol by NaBH ₄ catalyzes by MOE AgNPs in the second cycle. In [2,4-DNP] versus time plots using silver nanoparticles MOEAgNPs as catalysts for the reduction of 2,4-DNP carried out at 25 °C in the second cycle. UV/vis spectra of the catalytic reduction of 2,4-Dinitrophenol to the corresponding 2,4-Diaminophenol by NaBH ₄ catalyzes by MOE AgNPs as catalysts for the reduction of 2,4-DNP carried out at 25 °C in the second cycle. UV/vis spectra of the catalytic reduction of 2,4-Dinitrophenol to the corresponding 2,4-Diaminophenol by NaBH ₄ catalyzes by DRE AgNPs in the second cycle. In [2,4-DNP] versus time plots using silver nanoparticles DREAgNPs as catalysts for the reduction of 2,4-DNP carried out at 25 °C in the second cycle. Effect of temperature from 293 to 313 K on the k values of reduction reaction of 2,4-Dinitrophenol catalyzed by MOEAgNPs. Effect of temperature from 293 to 313 K on the k values of reduction reaction of 2,4-Dinitrophenol catalyzed by DREAgNPs. The Arrhenius plots of ln k vs. 1/T for the reduction reaction of 2,4- Dinitrophenol with NaBH ₄ at different temperature catalyzed by (a) MOEAgNPs, (b) DREAgNPs.

	MOEAgNPs, (b) DREAgNPs.	
Fig. 34	FT-IR spectra of DRE, (DREAgNPs) and (DREAgNPs-Cu).	172
Fig. 35	Effect of Cu ²⁺ ions concentration on R.E. by (DREAgNPs).	175
Fig. 36	Effect of adsorbent dosage on Cu ²⁺ ions removal efficiency at initial	176
	concentration of Cu^{2+} ions (15 mg/L) by AgNPs.	
Fig. 37	Effect of adsorbent particle size on Cu ²⁺ ions removal efficiency at initial	179
	concentration of Cu^{2+} (15 mg/L) by AgNPs.	
Fig. 38	Effect of contact time on Cu ²⁺ ions removal efficiency at different initial	180
	concentrations (15, 30 and 50 mg/L) by AgNPs.	
Fig. 39	Effect of temperature on Cu ²⁺ ions removal efficiency at different initial	183
	concentrations (15, 30 and 50 mg/L) by AgNPs.	
Fig. 40	Linearized biosorption isotherms of Langmuir	187
Fig. 41	Linearized biosorption isotherms of Freundlich.	187
Fig. 42	Pseudo-first order model for biosorption of Cu ²⁺ ions by DREAgNPs.	194
Fig. 43	Pseudo-second order model for biosorption of Cu^{2+} ions by DREAgNPs.	194
Scheme 1	Images of Delonix regia and Moringa oleifera leaves.	65
Scheme 2	The preparation of Moringa oleifera extract	65
Scheme 3	The preparation of <i>Delonix regia</i> extract	65
Scheme 4	Color change in the reaction mixture (DREAgNPs) with time.	66
Scheme 5	The color of the mixture MOEAgNPs changed from pale yellow to dark brown with 3 min time interval.	66
Scheme 6	The color of the mixture changed from pale yellow to dark within 24 hour.	67
Scheme 7	Preparation of DREAgNPs and MOEAgNPs.	67
Scheme 8	Biosynthesis mechanism of AgNPs	116

List of Tables

Table	Caption	page
Table 1	UV/vis absorption peak of AgNPs formation (λ_{max} nm)	84
Table 2	XRD parameters for the synthesized AgNPs.	92
Table 3	The shape and size of synthesized AgNPs using different plants	98
Table 4	The optimum conditions of the studied green synthesis process	102
Table 5	Cytotoxic activity (IC ₅₀) of the synthesized DREAgNPs and MOEAgNPs	118
	against Colon carcinoma cells, (HCT-116), hepatic cellular carcinoma cells,	
	(HepG-2) and breast carcinoma cells (MCF-7).	
Table 6	Results of antimicrobial of the synthesized DREAgNPs and MOEAgNPs	129
	against different strains of bacteria and fungi. and Activity index x 100	
Table 7	The effects of the synthesized MOEAgNPs on S. littoralis larval mortality.	142
Table 8	The effect of the synthesized MOEAgNPs on pupation of <i>S. littoralis</i> .	145
Table 9	Catalytic reduction of 2,4-Dinitrophenol (2,4-DNP) using catalyst	161
	(MOEAgNPs and (DREAgPs) in presence of NaBH4.	
Table 10	Temperature dependent k values for the reduction of 2,4-Dinitrophenol	162
	catalyzed by MOEAgNPs and DREAgNPs.	
Table 11	Thermodynamic parameters ΔH^* , ΔS^* , ΔG^* and E_a for the reduction of	165
	2,4-Dinitrophenols catalyzed by MOEAgNPs and DREAgNPs.	
Table 12	Effect of Cu^{2+} ions concentration on removal efficiency by (DREAgNPs).	174
Table 13	Cu^{2+} ions removal efficiency at initial concentration of Cu^{2+} (15 mg/L) and different adsorbent dosage by AgNPs.	177
Table 14	Effect of the adsorbent particle size AgNPs on the biosorption efficiency of	178
	Cu^{2+} ions.	
Table 15	Effect of contact time on Cu^{2+} ions removal efficiency at different initial concentrations (15, 30 and 50 mg/L) by AgNPs.	181
Table 16	Effect of temperature on Cu ²⁺ ions removal efficiency at different	182
	initial concentrations (15, 30 and 50 mg/L) by AgNPs.	

Table 17	Values of the amount of Cu^{2+} ions adsorbed at equilibrium (q _e mg g ⁻¹)	185
	adsorbent) and the equilibrium concentration of adsorbate ($C_e \text{ mg } L^{-1}$) for	
	isotherms of Langmuir.	
Table 18	values of the amount of Cu^{2+} ions adsorbed at equilibrium (q _e mg g ⁻¹	186
	adsorbent) and the equilibrium concentration of adsorbate ($C_e \text{ mg } L^{-1}$) for	
	isotherms of Freundlich.	
Table 19	Isotherm constants of Cu ²⁺ ions biosorption on DREAgNPs at various	189
	temperatures.	
Table 20	A dimensionless constant separator factor (R_L) for Langmuir type	189
	biosorption process.	
Table 21	Thermodynamic parameters for the biosorption process.	191
Table 22	q_t of Cu^{2+} ions biosorption onto DREAgNPs.	193
Table 23	Kinetic parameters of Cu ²⁺ ions biosorption onto DREAgNPs	193