

The Effect of Some Microorganisms on Wilt Disease and Soil Fertility for Hibiscus sabdariffa L. Productivity in Sandy Soil

A Thesis By

Doaa El Sayed Mosaad Gaafar

B.Sc. Microbiology, Microbiology Dept., Faculty of Science, Suez Canal University (2002) M.Sc. Microbiology, Botany and Microbiology Dept., Faculty of Science, Damietta University (2014)

Submitted for the Degree of Doctor of Philosophy in Science / Botany and Microbiology / Microbiology

Supervisors

Prof. Dr.

Zakaria Awad Mohamed Baka

Professor of Microbiology Department of Botany and Microbiology Faculty of Science Damietta University

Prof. Dr.

Mohamed Ismail Abou-Dobara Professor of Bacteriology and Head of Department of Botany and Microbiology Faculty of Science Damietta University

Prof. Dr.

Heba Shehata Shehata Professor of Microbiology Soils Water and Environment Institute Agricultural Research Centre Cairo, Egypt

Prof. Dr.

Hany Mohamed Ahmed El-Tapey Professor of Soil Survey and Classification Soils, Water and Environment Institute Agricultural Research Centre Cairo, Egypt

	Page
Introduction	1
Aim of work	2
Review of literature:	
1- Roselle:	3
1.1- Roselle in Egypt	3
1.2- Nutritional values and usages	4
1.3- Traditional medicines of roselle	5
1.4- Diseases of roselle	5
1.4.1- Wilt disease of roselle	6
2- Biological control	7
3- Bioagents:	
3.1- Rhizobacteria	7
3.1.1- Bacillus subtilis	8
3.1.1.1- The biocontrol aptitudes of <i>Bacillus</i> , their antimicrobial	
compounds, mode of action and spectrum of these	
compounds.	
3.1.1.1.1 - Lipopeptides- and antibiotics-based weapons	9
3.1.1.1.2- Plant growth promotion as an indirect weapon	9
3.1.1.1.3- Systemically induced disease resistance	10
3.1.1.1.4- Triggering of phenolic compounds	10
3.1.1.1.5- Structural and genetic activation of host plants	11
3.1.1.1.6- Activation of plant-resistance activators	11
3.1.1.1.7- Enzymatic weapons	11
3.1.1.1.8- Colonization	12
3.1.2- Pseudomonas fluorescens	13
3.1.2.1- Mechanisms of bio-control Pseudomonas fluorescens	
against different plant pathogens:	
3.1.2.1.1- Antibiosis	13
3.1.2.1.2- Competition for root niches and nutrients	14
3.1.2.1.3- HCN production	14
3.1.2.1.4- Siderophore production	15
3.1.2.1.5- Induced systemic resistance	15
3.2- Mycorrhizae	16
3.2.1- Effect of arbuscular mycorrhizal fungi (AMF) on root	
pathogens	16
3.2.2- Mechanisms of suppression of root pathogen by AMF:	
3.2.2.1- Morphological alterations	17

Contents

ſ	3.2.2.2- Physiological and biochemical alterations.	
	3.2.2.2.1- Improved nutrient status of the host plant	17
	3.2.2.2- Competition for host photosynthates	18
	3.2.2.3- Higher levels of phenols and amino acids	18
	3.2.2.2.4- Activation of plant defense mechanisms	18
	3.2.2.3- Biological alterations	19
	3.3- Pleurotus spp	19
	4- Effect of root exudates on rhizosphere	20
	5- Soil fertility	21
	5.1- Sandy soil fertility	22
	5.2- Effects of microbiota on soil fertility:	
	5.2.1- Effects of plant growth promoting rhizobacteria (PGPR)	23
	5.2.2- Effects of mycorrhizae	24
	5.2.3- Effects of <i>Pleurotus</i> spp	25
	5.3- Effects of microbial inoculation on plant productivity:	
	5.3.1- Effects of plant growth promoting rhizobacteria (PGPR)	25
	5.3.2- Effects of mycorrhizae	26
	5.3.3- Effects of <i>Pleurotus</i> spp	27
	Material and methods:	
	A: Laboratory work	
	1- Isolation, purification and identification of pathogen	29
	2- Pathogenic potential of the isolated pathogen	29
	3- Preparation of the pathogen inoculum	29
	4- Preparation of biocontrol agents	30
	4.1- Preparation of bacterial stains	30
	4.2- Preparation of <i>Pleurotus ostreatus</i>	30
	4.3- Preparation of mycorrhizal fungi	30
	5- Antagonistic test:	
	5.1- Antibiosis of biocontrol agents towards the fungal pathogen.	31
	5.2- Antibiosis of biocontrol agents towards the fungal pathogen	
	using the biocontrol agent filtrate	31
	6- Biochemical activities of bioagents:	
	6.1- Siderophores production	32
	6.2- Hydrogen cyanide production	32
	6.3- Phosphate solubilization	33
	6.4- Quantitative determinations of plant growth promoting	
	substances in culture media	33
	6.4.1- Extraction	33
	6.4.2- Determination of Indole acetic acid	34

6.4.3- Determination of total gibberellins	34
6.4.4- Determination of total carbohydrates	34
6.5- Enzymatic activity of bioagents:	
6.5.1- β- 1,3 glucanase (Laminarinase)	35
6.5.2- β- 1,4 glucanase (cellulase)	35
6.5.3- Chitinase activity	36
6.5.4- Protease	36
B: The agriculture practices:	
1- Seed treatment	37
2- Greenhouse experiment	37
3- Impact of some biocontrol agents on Fusarium wilt incidence	38
4- Field experiment	38
4.1- Layout of field experiment	38
4.2- Fertilization	39
5- Microbial activity of soil and plant after 60 days from planting	
5.1- Dehydrogenase activity	39
5.2- Determination of photosynthetic pigments	40
5.3- Determination of total phenol contents	41
5.4- Microbial root colonization	41
6- Plant growth parameters	42
7- Yield parameters	42
8- Extraction of roselle root exudates	42
9- Preparation of collecting soil and plant samples of field	
experiment for analysis	43
9.1- Soil analysis	43
9.2- Plant analysis	45
10- Statistical analysis	45
Results	
Laboratory work	
1- Identification of the isolated pathogen	46
2- Pathogenic potentiality of the isolated pathogen	46
3- Antagonistic test:	
3.1- Antibiosis of biocontrol agents towards the fungal pathogen	47
3.2- Antibiosis of biocontrol agents towards the fungal pathogen	
using the biocontrol agent filtrate	47
4- Biochemical activities of the bioagents:	
4.1- Plant growth promoting and antifungal properties of	
bioagents	47

4.2- Enzymatic activities of bioagents	50
The agriculture practices:	
1-Greenhouse experiment:	
1.1- Impact of some biocontrol agents on wilt disease	
incidence	52
1.2- Dehydrogenase activity	54
1.3- Root colonization	54
1.4- Total phenols	56
1.5- Photosynthetic pigments	56
	59
	62
1.8- Growth pattern of microbiota in culture media supplemented	
	62
2-Field experiment	
2.1- Impact of some biocontrol agents on wilt disease	
incidence	65
	65
2.3- Root colonization	65
2.4- Photosynthetic pigments	68
	69
-	69
2.7- Plant analysis.	
2.7.1- Macronutrient concentrations and uptake in roselle	
calyx	72
2.7.2- Macronutrient concentrations and uptake in roselle	
shoot	72
2.8- Soil analysis.	
2.8.1- Effect of microbiota inoculation on soil fertility statues	
after roselle plant (<i>Hibiscus sabdariffa</i> L.)	
cultivation	75
2.8.2- Effects of microbiota inoculation on soil pH, EC and	
soluble ions after roselle (Hibiscus sabdariffa L.) plant	
cultivation	77
2.8.3- Effects of microbiota inoculation on soil sodium	
adsorption (SAR), exchangeable sodium percentage	
(ESP), calcium carbonate ($CaCO_3$) and organic matter	
	79
2.8.4- Effect of microbiota inoculation on soil aggregates after	
	81
Discussion	83

Conclusion	94
Summary	95
References	
Arabic summary	

List	of	tab	les
------	----	-----	-----

Table No.	Table title	Page
Table (1)	Some chemical and physical properties of experimental soil.	44
Table (2)	Effect of Bacillus subtilis (BSR-8), Pseudomonas fluorescens (PSR-	48
	11) and <i>Pleurotus ostreauts</i> on reduction percentage of linear growth	
	in millimeter of <i>Fusarium oxysporum</i> grown on potato dextrose agar	
	medium.	
Table (3)	Effect of bacterial mixture filtrates of <i>Bacillus subtilis</i> (BSR-8) and	49
	<i>Pseudomonas fluorescens</i> (PSR-11) and of <i>Pleurotus ostreauts</i> on the	
	reduction percentage of linear growth in millimeter of Fusarium	
	oxysporum grown on potato dextrose agar medium	
Table (4)	Plant growth promoting and antifungal properties of <i>Bacillus subtilis</i>	51
	(BSR-8) and <i>Pseudomonas fluorescens</i> (PSR-11).	
Table (5)	Plant growth promoting (PGRP) and antifungal properties of	51
	Pleurotus ostreauts.	
Table (6)	Lytic enzymes production by <i>Bacillus subtilis</i> (BSR-8) and	51
	Pseudomonas fluorescens (PSR-11).	
Table (7)	Impact of some bioagents on some shoot parameters of bright and	60
	dark roselle plant varieties grown in soil artificially infested by <i>F</i> .	
	oxysporum under greenhouse conditions.	
Table (8)	Some yield parameters as affected by some biological agents of bright	63
	and dark roselle plant varieties grown in soil artificially infested by <i>F</i> .	
	oxysporum under greenhouse conditions.	
Table (9)	Some growth parameters of roselle plant (<i>Hibiscus sabdariffa</i> L.)	70
	under different microbiota inoculation.	
Table (10)	Some yield parameters of roselle plant (<i>Hibiscus sabdariffa</i> L.) under	71
	microbiota inoculation.	
Table (11)	Biological influence on macronutrient concentrations and uptake of	73
	roselle plant (<i>Hibiscus sabdariffa</i> L.) calyx under field conditions.	
Table (12)	Macronutrient concentrations and uptake of roselle plant shoot	74
	(<i>Hibiscus sabdariffa</i> L.) under different microbiota inoculation.	
Table (13)	Impact of microbiota inoculation on available macronutrients in soil	76
Table (15)	after roselle (<i>Hibiscus sabdarriffa L.</i>) plant cultivation.	70
Table (14)	Impact of microbial inoculation on soil pH, EC and soluble ions after	78
	roselle (<i>Hibiscus sabdariffa</i> L.) plant cultivation.	70
Table (15)	Impact of some microbiota on soil soil sodium adsorption (SAR),	80
10010 (15)	exchangeable sodium percent (ESP), CaCO ₃ and organic matter	00
	(O.M.) after roselle (<i>Hibiscus sabdariffa</i> L.) plant cultivation.	
Table (16)	Effect of microbiota inoculation on soil aggregate size distribution	82
14010 (10)	after roselle (<i>Hibiscus sabdarriffa</i> L.) plant cultivation.	02

List of Figures

Figure No.	Figure title	Page
Figure (1)	Morphology of roselle plant. (A) leaves; (B) pink or yellow flower; (C) red fresh calyces; (D) fruit; (E) dark brown seeds.	4
Figure (2)	Plant growth-enhancing mechanisms of plant growth-promoting rhizobacteria (PGPR).	8
Figure (3)	Wilt of roselle (<i>Hibiscus sabdariffa</i> L.) plants artificially infected with <i>F. oxysporum</i> (A) Infected plant (B) Control.	46
Figure (4)	Effect of <i>Bacillus subtilis</i> (BSR-8), <i>Pseudomonas fluorescens</i> (PSR-11) and <i>Pleurotus ostreauts</i> on reduction percentage of linear growth in millimeter of <i>Fusarium oxysporum</i> grown on potato dextrose agar medium	48
Figure (5)	Effect of culture filtrates of <i>Bacillus subtilis</i> (BSR-8) and <i>Pseudomonas</i> <i>fluorescens</i> (PSR-11) and <i>Pleurotus ostreauts</i> on the reduction percentage of linear growth in millimeter of <i>Fusarium oxysporum</i> grown on potato dextrose agar medium	49
Figure (6)	Percentages of wilted % and survived plants % as influenced by some bioagents on bright (A) and dark (B) roselle varieties grown in soil artificially infested by <i>F. oxysporum</i> under greenhouse conditions. Data are expressed as a mean \pm standard error, L.S.D. test (ANOVA). Statistical significance was considered as P< 0.05.	53
Figure (7)	Biological influence on dehydrogenase activity of bright and dark roselle varieties grown in soil artificially infested by <i>F. oxysporum</i> under greenhouse conditions. Data are expressed as a mean ± standard error L.S.D. test (ANOVA). Statistical significance was considered as P< 0.05.	55
Figure (8)	Root colonization % as affected by some microbiota on bright and dark roselle varieties grown in soil artificially infested by <i>F. oxysporum</i> under greenhouse conditions. Data are expressed as a mean \pm standard error, L.S.D. test (ANOVA). Statistical significance was considered as P< 0.05.	55
Figure (9)	Biological influence on phenol content of bright and dark roselle plant varieties grown in soil artificially infested by <i>F. oxysporum</i> under greenhouse conditions. Data are expressed as a mean ± standard error, L.S.D. test (ANOVA). Statistical significance was considered as P< 0.05.	57
Figure (10)	The impact of some microorganisms on photosynthetic pigment contents of bright and dark roselle plant varieties grown in soil artificially infested by <i>F. oxysporum</i> under greenhouse conditions. Data are expressed as a mean \pm standard error, L.S.D. test (ANOVA). Statistical significance was considered as P< 0.05	58
Figure (11)	Effect of some microbiota on growth of roselle plants growing on soil artificially infected with <i>Fusarium oxysporum</i> under greenhouse conditions.	61

Figure (12)	Effects of pale and dark roselle root exudates on growth pattern of (A) <i>P</i> . <i>fluorescence</i> and (B) <i>B. subtilis</i> . Data are expressed as a mean \pm standard error, L.S.D. test (ANOVA). Statistical significance was considered as P< 0.05.	64
Figure (13)	Wilt and survival percentages as influenced by some bioagents on roselle plant under field conditions. Data are expressed as a mean \pm standard error, L.S.D. test (ANOVA). Statistical significance was considered as P< 0.05.	66
Figure (14)	Biological influence on dehydrogenase activity of roselle plant under field conditions. Data are expressed as a mean \pm standard error, L.S.D. test (ANOVA). Statistical significance was considered as P< 0.05.	66
Figure (15)	Root colonization % as affected by some microbiota on roselle plant. Data are expressed as a mean \pm standard error, L.S.D. test (ANOVA). Statistical significance was considered as P< 0.05.	67
Figure (16)	The impact of some microorganisms on photosynthetic pigment contents (chlorophyll a, chlorophyll b and carotenoids) of roselle plants under field conditions. Data are expressed as a mean \pm standard error, L.S.D. test (ANOVA). Statistical significance was considered as P< 0.05.	68

Summary

The wide use of synthetic chemicals with low specificity and low biodegradability encouraged the discovery of bio-products as templates to develop biopesticides with new chemical formulas and mode of actions. The present investigation was carried out under greenhouse and field conditions to study the effects of inoculation of the bacterial mixture of *Bacillus subtilis*, *Pseudomonas fluorescens*, the fungus *Pleurotus ostreatus* and mycorrhiza on controlling wilt disease of roselle (*Hibiscus sabdariffa* L.) plant, and their effects on productivity and soil fertility. The results may be summarized as follows:

- 1- *Fusarium oxysporum*, the casual organism of roselle wilt disease, was isolated and identified from naturally infected plants. Pathogenicity test was performed and showed the infectious symptoms on roselle plant.
- 2- Survival percentage was studied under greenhouse condition in artificially infected soil. The microbial mixture increased survival plants.
- 3- Root colonization and dehydrogenase enzyme activity significantly increased under both greenhouse and field conditions, the microbial mixture was the most effective.
- 4- Studying photosynthetic pigments under greenhouse conditions showed significant differences among treatments in carotenoids, while under field conditions it was significant in chlorophyll a.
- 5- Estimation of total phenols under greenhouse conditions showed that bioagents significantly increased the production of phenols in response to infection which increased plant defense mechanism.
- 6- Studying some growth parameters indicated that shoot length, number of branches and number of calyxes significantly increased with inoculation of microbial bioagent mixture.

- 7- Studying some yield parameters revealed the significant increases in shoot fresh and dry weight, calyx fresh and dry weights and in seed fresh weights in response to microbial mixture inoculation.
- 8- NPK concentrations and uptake in both shoots and calyx of roselle plant significantly increased in relative to microbial mixture inoculation comparable to the control.
- 9- Soil physical properties were studied after roselle plant cultivation. Some bioagents significantly increased soil aggregates due to the production of polysaccharides.
- 10- Chemical soil properties were studied after roselle plant cultivation. Data illustrated that as a result of microbial inoculation, available macronutrients (NPK) significantly increased, while organic matter not significantly increased. The pH, electrical conductivity (EC), sodium adsorption ratio (SAR), exchangeable sodium percentage (ESP) and CaCO₃ were decreased. Coming to final conclusion, it could be stated that inoculation of a mixture of microorganisms is more effective in controlling diseases than individual inoculation, in addition to the slightly increase in soil fertility.