GENETIC DIVERSITY AND MOLECULAR STUDIES ON SOME VEGETABLES

By

IBRAHIM MOHAMED IBRAHIM HAGGAG

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Al-Azhar Univ., 2013

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

Agricultural Sciences (Genetics)

Department of Genetics Faculty of Agriculture Cairo University EGYPT

2021

Vice Dean of Graduate Studies

Format Reviewer

Name of Candidate: Ibrahim Mohamed Ibrahim H	Haggag Degree : M.Sc.		
Title of Thesis: Genetic Diversity and Molecular S	Studies on Some Vegetables		
Supervisors: Dr. Naglaa Abdelmoniem Abdallah			
Dr. Nagwa Ibrahim Elarabi			
Dr. Neveen Abd-El Fatah Hassan			
Department: Genetics	Approval: / /2021		

ABSTRACT

Melon (Cucumis melo L.) is a valuable cash crop grown throughout the world. The current research was carried out to identify the genetic diversity among ten melon genotypes conserved in the gene bank, using descriptor Amplified morphological traits, and three different molecular markers; Fragment Length Polymorphism (AFLP), Start Codon Targeted (SCoT), and Simple-Sequence Repeats (SSRs). The fifty studied morphological characters (qualitative) and three measured (quantitative) comprised 47 descriptive characters. The fruit qualitative characters among the studied accessions had great variation and the quantitative traits revealed significant differences among them. The morphology-based dendrogram clustered the accessions into two main clusters fruit surface and corking/netting were the main characters that distinguished the two main clusters. Six AFLP primer combinations were used to characterize the melon accessions. AFLP markers were successfully characterized each of the ten accessions with unique positive/negative markers, with a total of 77 polymorphic amplicons and an average of 12.83 polymorphic amplicons/primer combinations. The percentage of polymorphism ranged from 35.71 to 71.42 % with an average of 54.6%. While, the eight SCoT primers gave 64 polymorphic amplicons with an average of eight amplicons/primer, the percentage of polymorphism ranged from 16.66% to 92.85% with an average of 73.56%. The SSR amplified 21 amplicons, with an average of 2.1 amplicons/primer. Out of ten SSR primer pairs, eight primers revealed 90.47% polymorphism. According to the combined dendrogram based on AFLP, SCoT and SSR the ten melon accessions were distinguished into two main clusters. Where, one accession was distantly away from the others at 0.82 similarity index. While, the second main cluster assigned the other accessions in closed clusters. The obtained results revealed that there is great variability among the melon accessions that could provides good source of diversity that could be used in melon improvement program.

Keywords: *Cucumis melo* L.; morphological characterisation; molecular markers; AFLP; SCoT; SSRs.

CONTENTS

INTRODUCTION	
REVIEW OF LITERATURE	
1- Melon origin, classification and importance	
2- Genetic diversity and Plant Genetic Resources (PGR) conservation	
3- Morphological characterisation of melon	
4- Molecular characterisation of melon	
a- Amplified Fragment Length Polymorphism (AFLP)	
b- Start Codon Targeted (SCoT)	
c- Simple Sequence Repeats (SSRs)	
MATERIALS AND METHODS	
1- Plant Materials	
2- Methods	••••
a- Morphological characterization	
b- Molecular characterization	•••••
(1) The Amplified Fragment Length Polymorphism (AFL analysis)
(2) Start Codon Targeted (SCoT) analysis	
(3) Simple Sequence Repeats (SSRs) analysis	
c- Data analysis	•••••
RESULTS AND DISCUSSION	
1- Morphological characterization of melon	
a- Melon quantitative (measured) morphological characters	
b- Melon descriptive (qualitative) morphological characters	••••••
- Morphology dendrogram among melon accessions	
2- Molecular characterization of melon	
a- Amplified Fragment Length Polymorphism (AFLP)	
analysis	
- Melon AFLP-based unique markers	
- Genetic relationships among melon accessions based on AFLP markers.	the
b- Start codon targeted (SCoT) analysis	
- Melon SCoT-based unique markers	
- Genetic relationships among melon accessions based on	
SCoTmarkers	

c- Simple Sequence Repeats (SSRs) analysis	67
- Genetic relationships among accessions based on SSRs	70
- Combined molecular (AFLP, SCoT, and SSR) data analysis	
and genetic relationship of the studied melon accessions	72
- Comparison between the three different types of molecular	
markers (AFLP, SCoT and SSRs)	74
- Comparison between dendrogram based on morphological	
traits and the molecular (AFLP, SCoT, SSR and combined	
molecular data) dendrograms	74
- coclusion	76
SUMMARY	77
REFERENCES	82
ARABIC SUMMARY	

LIST OF TABLES

No.

Title

1.	Accession number, source and horticultural variety of
	melon accessions
2.	The AFLP primer combinations
3.	The oligonucleotide seuence of the SCoT primers
4.	The oligonucleotide sequence of the SSR primers
5.	Mean values of the quantitative traits
6.	The qualitative morphological characters
7.	Primer combination, total number of amplicons, range
	size (bp), number of monomorphic amplicons, number of
	polymorphic amplicons and percentage of polymorphism
	as revealed by AFLP markers among the ten melon
	accessions
8.	Melon accessions characterised by unique positive and
	negative AFLP markers
9.	The similarity matrix of the ten melon accessions based
	on AFLP
10.	SCoT Primers, total number of amplicons, range size (bp),
	number of monomorphic amplicons, total number of
	polymorphic amplicons and percentage of polymorphism
	revealed by the SCoT markers
11.	Unique positive and negative SCoT markers charactersing
	the melon accessions
12.	The similarity matrix of the ten melon accessions based
	on SCoT
13.	SSR Primer name, total number of allels, size of amplified
	allels, total number of monomorphic amplicons, total
	number of polymorphic amplicons and percentage of
	polymorphism
14.	The similarity matrix of the ten melon accessions based
	on SSRs
15.	The similarity matrix of the ten melon accessions based
	on the combined molecular data (AFLP, SCoT and SSR)

LIST OF FIGURES

No.

Title

1.	Cross section in mature fruits showed differences between
2	The manufacture of mattern function 45
<i>2</i> .	Ine penotypic snape of meion mature truits
3.	UPGMA-Manhattan distances of the morphological
	characters
4.	AFLP polymorphism pattern with the ten melon
	accessions using combinations (<i>EcoRI</i> -AAC / <i>MseI</i> -CTC
	and <i>EcoRI</i> -AAG / <i>MseI</i> -CTC)
5.	AFLP polymorphism pattern with the ten melon
	accessions using combinations (EcoRI-ACA / MseI-CTC
	and <i>EcoRI</i> -ACG / <i>MseI</i> -CTA) 55
6	AFLP polymorphism pattern with the ten melon
	accessions using combinations (EcoRI- ACC / MseI- CTA
	and <i>EcoRI</i> -AAG / <i>MseI</i> -CAC)
7.	Dendrogram of melon accessions based on similarity
	matrix using UPGMA method computed on AFLP
	molecular markers
8.	SCoT banding pattern of the ten melon accessions
	(primers 1,2,3 and 4) 61
9.	SCoT banding pattern of the ten melon accessions
	(primers 5,6,7 and 8) 62
10.	Dendrogram of melon accessions based on similarity
	matrix using UPGMA method computed on SCoT
	molecular markers
11.	SSR profile of the ten melon accessions
12.	Dendrogram of the ten melon accessions based on
	similarity matrix using UPGMA method computed on
	SSR markers
13.	Dendrogram of the ten melon accessions based on
	similarity matrix using UPGMA method computed on the
	combined molecular data