Benha university Faculty of science Chemistry Department

Development and Validation of HPLC Methods for Determination of Some Cephalosporins in Pure and Dosage Forms

A Thesis Presented

By

Shaimaa Hussein Ali Nassar

M.Sc. Degree, Chemistry, Benha University

As a partial fulfillment of the Ph.D. degree in chemistry

2021

Under supervision of

Prof. Dr. Sayed Ahmed Abd Elaziz Shama Professor of Analytical Chemistry Chemistry Department Faculty of Science Benha University Prof. Dr. Elham Ahmed Mohamed Mobarez Professor of Pharmacology Chemistry Department Animal Health Research Institute Dokki, Giza

Dr.

Abdel Azeem Elsayed Elsharkawi Lecturer of Physical Chemistry Chemistry Department Faculty of Science Benha University

List of Contents

Subject		Page
List of Co	ntents	i
List of Fig	jures	vii
List of Tal	oles	xi
List of Ab	breviations	XV
	Chapter (1)	
	1. Introduction and Literature review.	
1.	General introduction.	1
1.1.	Development of an analytical method	2
1.2.	Analytical Method Validation	2
1.2.1.	Parameters of Analytical Method Validation	3
1.2.1.1.	System Suitability	3
1.2.1.1.1.	Number of theoretical plates/Efficiency (N)	3
1.2.1.1.2.	Capacity ratio or Capacity factor (k')	5
1.2.1.1.3.	Separation or Relative retention (α)	5
1.2.1.1.4.	Resolution (R _s)	5
1.2.1.1.5.	Tailing factor (T)	6
1.2.1.1.6.	Relative Standard Deviation (RSD)	6
1.2.1.2.	Specificity	7
1.2.1.3.	Linearity and Range	7
1.2.1.4.	Precision	7
1.2.1.5.	Accuracy	7
1.2.1.6.	Limit Of Detection	8
1.2.1.7.	Limit of quantitation	8
1.2.1.8.	Robustness	8

1.3.	β-Lactam Antibiotics	9
1.4.	Cephalosporins	11
1.4.1.	History.	11
1.4.2.	Chemistry	12
1.4.3.	Classification	13
1.4.3.1.	A method for the classification of cephalosporins	13
	based on microbiology and pharmacology	
1.4.3.2.	Cephalosporins can also be classified based on the	14
	chemical structure	
1.4.3.3.	Cephalosporins also are classified into five	16
	generations	
1.4.3.3.1.	First-generation	16
1.4.3.3.2.	Second-generation	16
1.4.3.3.3.	Third-generation	16
1.4.3.3.4.	Fourth-generation	16
1.4.3.3.5.	Fifth-generation	17
1.4.4.	Activity	18
1.4.5.	Mechanism of action	18
1.4.6.	Analysis	19
1.4.6.1.	Chromatographic methods	19
1.4.6.1.1.	Chromatography	19
1.4.6.1.2.	Types of chromatography	20
1.4.6.1.2.1.	Column chromatography	22
1.4.6.1.2.2.	Ion- exchange chromatography	22
1.4.6.1.2.3.	Gel- permeation (molecular sieve) chromatography	23
1.4.6.1.2.4.	Affinity chromatography	24

1.4.6.1.2.5.	Paper chromatography	25
1.4.6.1.2.6.	Thin-layer chromatography	26
1.4.6.1.2.7.	Gas chromatography	26
1.4.6.1.2.8.	Dye-ligand chromatography	27
1.4.6.1.2.9.	Hydrophobic interaction chromatography (HIC)	27
1.4.6.1.2.10.	Pseudo affinity chromatography	27
1.4.6.1.2.11.	High-Performance Liquid Chromatography	28
	(HPLC)	
1.4.6.1.3	Types of HPLC	28
1.4.6.1.3.1	Analytical HPLC	28
1.4.6.1.3.2	Preparative HPLC	28
1.4.6.1.4.	Separation Modes	29
1.4.6.1.4.1.	Partition chromatography	29
1.4.6.1.4.2.	Normal-phase chromatography	29
1.4.6.1.4.3.	Reversed-Phase Chromatography (RPC)	30
1.4.6.1.5.	The HPLC Instrument	31
1.4.6.1.5.1.	Mobile Phase	32
1.4.6.1.5.2.	Degasser	32
1.4.6.1.5.3.	Pump	33
1.4.6.1.5.4.	Injector, Auto sampler	33
1.4.6.1.5.5.	Column and Column Oven	33
1.4.6.1.5.6.	Detector	34
1.4.6.1.5.7.	Integrator, Data Processing Unit	35
1.4.6.1.5.8.	Waste	35
1.4.6.2.	Spectroscopic methods	36
1.4.6.2.1.	Ultraviolet spectrophotometric methods	36

1.4.6.2.2.	Visible spectrophotometric methods	36
1.4.6.2.2.1.	Metal complexation	36
1.4.6.2.2.2.	Charge-transfer complexation	37
1.4.6.2.2.3.	Redox reactions	37
1.4.6.2.2.4.	Degradation followed by reaction with coloring	37
	reagents	
1.4.6.2.2.5.	Ion pair formation	38
1.4.6.2.3.	Spectrofluorometric methods	38
1.4.6.2.3.1.	Measurement of the fluorescence of the hydrolytic	38
	products	
1.4.6.2.3.2	Based on redox reactions	38
1.4.6.2.3.3.	Reaction with fluorogenic agents	38
1.4.6.2.3.4.	Quenching methods	39
1.4.6.2.4.	Chemiluminescence methods	39
1.4.6.2.5.	Atomic absorption spectrometric methods	39
1.5.	Literature Review	39
Aim of the v	vork.	49
	Chapter (2)	
	2. Experimental.	
2.1.	Chemicals and reagents	50
2.2.	Equipment	51
2.3.	Selection of Detection Wavelength	51
2.4.	Method development trials	52
2.5.	Mobile Phase Preparation.	52
2.6.	Preparation of Standards Solutions	53
2.7.	Preparation of sample solution	53

2.8.	Chemical structure of selected cephalosporins	54
2.9.	Method Validation	55
2.9.1.	Specificity	55
2.9.2.	Linearity	55
2.9.3.	Precision	55
2.9.3.1.	Intra-day Precision	55
2.9.3.2.	Inter-day Precision.	56
2.9.4.	Accuracy	56
2.9.5.	Limit of Detection and Limit of Quantification	56
2.9.6.	Robustness	56
2.9.7.	System-Suitability Test	57
2.10.	Chromatographic Conditions	57
2.11.	Statistical analysis	57
	Chapter (3)	
	3. Results and discussion.	
3.1.	Method development and optimization	60
3.1.1.	Selection of wavelength for determination	60
3.1.2.	Selection of Column	65
3.1.3.	Selection of mobile phase	65
3.1.4.	Optimized chromatographic condition	69
3.2.	Validation of the method	69
3.2.1.	Specificity	69
3.2.2.	Linearity and Range	70
3.2.3.	Limit of detection	81
3.2.4.	Limit of quantification	82
3.2.5.	Precision	88

3.2.6.	Accuracy	92
3.2.7.	Robustness.	98
3.2.7.1.	Robustness Regarding pH of mobile phase (±0.2).	99
3.2.7.2.	Robustness Regarding Wavelength (±3)	104
3.2.7.3.	Robustness Regarding Temperature (±5)	110
3.2.7.4.	Summary of robustness results	116
3.2.8.	System suitability test (SST)	120
Conclusion		125
English summary		126
References		130
Arabic sumn	nary	145

LIST OF FIGURES

List	of	Figures
------	----	----------------

Figure	Title	Page
1	Half-height method relating to the determination of N.	4
2	Sigma/tangential method relating to the determination of N.	4
3	Example of Capacity factor calculation in LC	5
4	Global sales of the major antibacterial classes in 2004 (from Wood Mackenzie [69]).	10
5	The difference in the core structure of penicillins and cephalosporins	13
6	Chemical structure of Cephalosporins	15
7	Classification of Cephalosporins	17
8	Mechanism of action of cephalosporins	19
9	A) Types of chromatography, B) Classification of the chromatographic method	21
10	Mechanism of Column Chromatography	22
11	Mechanism of Ion-Exchange Chromatography	23
12	Mechanism of Gel Permeation Chromatography	24
13	Mechanism of Affinity Chromatography	25
14	Mechanism of Paper Chromatography	25
15	Mechanism of Thin-layer Chromatography	26
16	Mechanism of Gas Chromatography	27
17	Mechanism of Normal-phase HPLC Separation	30
18	Mechanism of Reversed-phase HPLC Separation	31
19	The HPLC instrument	32
20	Chemical Structure of Selected Cephalosporins	54
21	Chromatogram of mixed standard solution of selected cephalosporins (50 µg/ml)	59

22	Chromatogram of mixed standard solution of selected cephalosporins $(10 \ \mu g/ml)$ at 230nm.	61
	Chromatogram of mixed standard solution of selected cephalosporins	61
23	(20 µg/ml) at 230nm.	
2.1	Chromatogram of mixed standard solution of selected cephalosporins	62
24	(20 µg/ml) at 240nm.	
25	Chromatogram of mixed standard solution of selected cephalosporins	62
25	(10 µg/ml) at 270nm.	
26	Chromatogram of mixed standard solution of selected cephalosporins $(20 \ \mu g/ml)$ at 270nm.	63
27	Chromatogram of mixed standard solution of selected	63
	cephalosporins (10 μg/ml) at 280nm.	<i>C</i> 1
28	Chromatogram of mixed standard solution of selected cephalosporins	64
	(20 µg/ml) at 280nm.	
29	Chromatogram of mixed standard solution of selected cephalosporins	64
	(10 µg/ml) at 250nm.	
30	Chromatogram of mixed standard solution of selected cephalosporins	66
	using mobile phase proportion 85:15 at flow rate 1 mL/min. Chromatogram of mixed standard solution of selected cephalosporins	66
31	using mobile phase proportion 90:10 at flow rate 1 mL/min.	00
32	Chromatogram of mixed standard solution of selected cephalosporins	70
33	Chromatogram of mixed samples solution of selected cephalosporins	70
34	Calibration curve of Cefepime Hydrochloride	71
35	Calibration curve of Ceftazidime	72
36	Calibration curve of Ceftiofur Sodium	72
37	Calibration curve of Cefotaxime Sodium	73
38	Calibration curve of Ceftriaxone Sodium	73
39	Calibration curve of Cefoperazone Sodium.	74
40	Calibration curve of Cephradine	74
41	Calibration curve of Cefazolin Sodium	75

42	Chromatogram of mixed standard solution of selected cephalosporins	78
	$(0.5 \mu g/ml)$	
	Chromatogram of mixed standard solution of selected cephalosporins	79
43	(1 μg/ml).	
4.4	Chromatogram of mixed standard solution of selected cephalosporins	79
44	(2 μg/ml).	
45	Chromatogram of mixed standard solution of selected cephalosporins	80
43	(5 μg/ml).	
46	Chromatogram of mixed standard solution of selected cephalosporins	80
40	(10 µg/ml).	
47	Chromatogram of mixed standard solution of selected cephalosporins	81
4/	(20 µg/ml).	
48	Chromatogram of mixed standard solution of selected cephalosporins	81
40	(50 µg/ml).	
49	Chromatogram of mixed standard solution of selected cephalosporins $(0.1 \ \mu g/ml)$.	87
50	Chromatogram of mixed standard solution of selected cephalosporins $(0.2 \ \mu g/ml)$.	87
51	Chromatogram of mixed samples solution of selected cephalosporins	88
51	(10 µg/ml).	
52	Chromatogram of mixed samples solution of selected cephalosporins	93
52	(5 μg/ml).	
53	Chromatogram of mixed samples solution of selected cephalosporins	93
55	(10 µg/ml).	
51	Chromatogram of mixed samples solution of selected cephalosporins	94
54	(20 µg/ml)	

	A Representative chromatogram of robustness regarding pH change	104
55	5.8.	
	A Representative chromatogram of robustness regarding pH change	104
56	5.4.	
57	A Representative chromatogram of robustness regarding wavelength	109
57	247 nm.	
58	A Representative chromatogram of robustness regarding wavelength	109
50	253 nm.	
59	A Representative chromatogram of robustness regarding temperature	115
	25° C.	
60	A Representative chromatogram of robustness regarding temperature	115
00	35° C.	

List of Tables

Table	Title	Page
1	Different mobile phases have been used in method	68
	development	
2	Summary of peak purity results.	69
3	Regression statistics	71
4	Linearity data of Cefepime Hydrochloride	75
5	Linearity data of Ceftazidime	76
6	Linearity data of Ceftiofur Sodium	76
7	Linearity data of Cefotaxime Sodium	76
8	Linearity data of Ceftriaxone Sodium	77
9	Linearity data of Cefoperazone Sodium	77
10	Linearity data of Cephradine	77
11	Linearity data of Cefazolin Sodium	78
12	LOD and LOQ of selected cephalosporins	82
13	Results of linearity of lower calibration curve to calculate LOD	83
	and LOQ of Cefepime Hydrochloride	
14	Results of linearity of lower calibration curve to calculate LOD	83
	and LOQ of Ceftazidime	
15	Results of linearity of lower calibration curve to calculate LOD	84
	and LOQ of Ceftiofur Sodium	
16	Results of linearity of lower calibration curve to calculate LOD	84
	and LOQ of Cefotaxime Sodium	
17	Results of linearity of lower calibration curve to calculate LOD	85
	and LOQ of Ceftriaxone Sodium	

10		
18	Results of linearity of lower calibration curve to calculate LOD	85
	and LOQ of Cefoperazone Sodium	
19	Results of linearity of lower calibration curve to calculate LOD	86
	and LOQ of Cephradine	
20	Results of linearity of lower calibration curve to calculate LOD	86
	and LOQ of Cefazolin Sodium	
21	Interday and Intraday precision data for Cefepime	88
	Hydrochloride	
22	Interday and Intraday precision data for Ceftazidime	89
23	Interday and Intraday precision data for Ceftiofur Sodium	89
24	Interday and Intraday precision data for Cefotaxime Sodium	90
25	Interday and Intraday precision data for Ceftriaxone Sodium	90
26	Interday and Intraday precision data for Cefoperazone Sodium	91
27	Interday and Intraday precision data for Cephradine	91
28	Interday and Intraday precision data for Cefazolin Sodium	92
29	Accuracy of the product of Cefepime Hydrochloride	94
30	Accuracy of the product of Ceftazidime	95
31	Accuracy of the product of Ceftiofur Sodium	95
32	Accuracy of the product of Cefotaxime Sodium	96
33	Accuracy of the product of Ceftriaxone Sodium	96
34	Accuracy of the product of Cefoperazone Sodium	97
35	Accuracy of the product of Cephradine	97
36	Accuracy of the product of Cefazolin Sodium	98
37	Robustness Regarding pH on Cefepime Hydrochloride	99
38	Robustness Regarding pH on Ceftazidime	100
39	Robustness Regarding pH on Ceftiofur Sodium	100

List of Tables

40	Robustness Regarding pH on Cefotaxime Sodium	101
41	Robustness Regarding pH on Ceftriaxone Sodium	101
42	Robustness Regarding pH on Cefoperazone Sodium	102
43	Robustness Regarding pH on Cephradine	102
44	Robustness regarding pH on Cefazolin Sodium	103
45	Robustness Regarding Wavelength of Cefepime Hydrochloride	105
46	Robustness Regarding Wavelength of Ceftazidime	105
47	Robustness Regarding Wavelength of Ceftiofur Sodium	106
48	Robustness Regarding Wavelength of Cefotaxime Sodium	106
49	Robustness Regarding Wavelength of Ceftriaxone Sodium	107
50	Robustness Regarding Wavelength of Cefoperazone Sodium	107
51	Robustness Regarding Wavelength of Cephradine	108
52	Robustness Regarding Wavelength of Cefazolin Sodium	108
53	Robustness Regarding temperature of Cefepime Hydrochloride	110
54	Robustness Regarding temperature of Ceftazidime	111
55	Robustness Regarding temperature of Ceftiofur Sodium	111
56	Robustness Regarding temperature of Cefotaxime Sodium	112
57	Robustness Regarding temperature of Ceftriaxone Sodium	112
58	Robustness Regarding temperature of Cefoperazone Sodium	113
59	Robustness regarding temperature of Cephradine	113
60	Robustness regarding temperature of Cefazolin Sodium	114
61	Results of Robustness of Cefepime Hydrochloride	116
62	Results of Robustness of Ceftazidime	116
63	Results of Robustness of Ceftiofur Sodium	117
64	Results of Robustness of Cefotaxime Sodium	117
65	Results of Robustness of Ceftriaxone Sodium	118

List of Tables

66	Results of Robustness of Cefoperazone Sodium	118
67	Results of Robustness of Cephradine	119
68	Results of Robustness of Cefazolin Sodium	119
69	Results from system suitability study on 10 µg/ml Cefepime Hydrochloride	120
70	Results from system suitability study on 10 µg/ml Ceftazidime	120
71	Results from system suitability study on 10 µg/ml Ceftiofur Sodium	121
72	Results from system suitability study on 10 µg/ml Cefotaxime Sodium	121
73	Results from system suitability study on 10 µg/ml Ceftriaxone Sodium:	121
74	Results from system suitability study on 10 µg/ml Cefoperazone Sodium	121
75	Results from system suitability study on 10 µg/ml Cephradine	121
76	Results from system suitability study on 10 µg/ml Cefazolin Sodium	122
77	Different HPLC methods for the analysis of cephalosporin with analytical parameters	122

Summary

Summary

The present work aims to develop and validate simple, rapid, accurate, sensitive method for simultaneous separation and determination of some cephalosporins from different generations (Cefepime Hydrochloride, Ceftazidime, Ceftiofur Sodium, Cefotaxime Sodium, Ceftriaxone Sodium, Cefoperazone Sodium, Cephradine and Cefazolin Sodium) as important class of antibiotics used today by both humans and animals which commonly used to treat pathogens and prevent disease outbreaks due to their large range of antibacterial action, this by trying different methods to reach the suitable method of separation for simultaneous determination of selected cephalosporins with lower limits of detection and quantification.

This thesis consists mainly of three chapters as follows:

<u>Chapter (1):</u> Introduction and literature review.

Contain two parts:

The first part represented general introduction about the process of development and validation of analytical methods and its importance, also the international agencies which concerned with the requirements and the guide lines of the validation of analytical methods as International Conference for Harmonization of technical requirements for pharmaceuticals for human use (ICH). This part provides short notes about physical and chemical properties of β - Lactams and Cephalosporins besides their mode of action and uses. Also give attention to the different analytical methods used for separation which include chromatographic methods in addition to the meaning of chromatography, HPLC instrument and its types.

The second part includes a literature survey of the previous works carried out by different analytical techniques which include chromatographic methods for determination of the drugs in different matrices.

126

Chapter (2): Experimental

It includes the experimental part, where the materials, reagent, preparation of various solutions and the equipment used are presented. This chapter also includes the optimum chromatographic conditions for separation of selected drugs and also preparation of standard solutions, samples solutions and mobile phase used in the validation criteria of ICH.

<u>Chapter (3):</u> Result and discussion

Reviewing and analyzing the results and divided into three parts:

- (a) The optimization of chromatographic condition for determination of cephalosporins in pure and dosage forms:
 - Selection of optimum detection wavelength: In this study wide range of wavelengths was tested to monitor the mixed cephalosporins. The wave length 250 nm was selected as optimum wavelength for determination of these group of cephalosporins.
 - 2. Selection of suitable mobile phase: As we tried a number of mobile phases with different flow rates to achieve best separation. The isocratic mobile phase consists of 0.1M ammonium acetate, acetonitrile with pH 5.6 was chosen to use throughout this study.
 - 3. Selection of stationary phase: C8 column was used for separation of these group of cephalosporins.
- (b) Validation of the suggested method:

This process established by some laboratory studies which include:

1. Specificity: There is no interference between the pure standard and peaks of any impurities.

Summary

- 2. Linearity and range: linearity was evaluated by analysis of different concentrations of mixed standard solutions by HPLC to determine (R2) from the linear calibration curve of each drug which found to be 0.9999.
- 3. Limit of detection and quantification: The results showed that the suggested method achieved lower limits of detection and quantification of selected cephalosporins.
- 4. Method precision: Six replicate injections of 100% of test concentration (10 μ g/mL) for each drug prepared and injected triply for each sample on the same day and also on different days. Precision was expressed as relative standard deviation which found to meet the acceptance crieteria of method precision of ICH.
- 5. Accuracy and recovery: The accuracy is calculated from the obtained results as percentage recovery of mixed sample solutions versus mixed standard solutions.
- 6. Robustness: By analyzing the samples of mixed cephalosporins with varying procedure parameters and observing to which extent it will affect on the analyte analysis, the number of replicates (3) for the concentration level 100% (10μ g/mL) and evaluated based on system suitability parameters on recovered amounts, compared to data obtained using the original chromatographic parameters of the method and the results showed that the method is robust according to ICH acceptance criteria.
- 7. System Suitability Tests

Finally, the proposed RP-HPLC method is simple, specific, precise, accurate, and reproducible for simultaneous analysis of some cephalosporins antibiotics from different generations. The simultaneous quantification of this important group of cephalosporins with isocratic solvent system in the same run not only saves the

Summary

solvent but also with short run time makes it better choice for the analysis of these drugs as in quality control and research lab.