

Benha University Faculty of Veterinary Medicine Department of Bacteriology, Immunology and Mycology

GENETIC CHARACTERIZATION OF TOXIGENIC CLOSTRIDIUM perfringens ISOLATED FROM HERBS AND SPICES IN EGYPT

A thesis submitted By

Hend Shawky Abd El-Aziz Hassan Youssef

B.V. M. Sc., Faculty of Veterinary Medicine, Benha University, 2009 M.V.M. Sc., Faculty of Veterinary Medicine, Benha University, 2016

For the degree of the Ph.D in Veterinary Medicine (Bacteriology, Immunology and Mycology).

Under Supervision of

Prof. Dr.

Ashraf Awad Abd El-Tawab

Professor Doctor and Head of Bacteriology, Immunology and Mycology Department, Faculty of Veterinary Medicine, Benha University

Prof. Dr.

Fatma Ibrahim El Hofy

Professor Emeritus at Bacteriology, Immunology and Mycology Department, Faculty of Veterinary Medicine, Benha University

Dr. Mohamed Abdallah Mahmoud

Researcher at Microbiology Department, Central Lab. of Residue Analysis of Pesticides & Heavy Metals in Food, ARC, Ministry of Agriculture

CONTENTS

Item	Page
1. Introduction	1
2. Review of literature	
2.1. Pathogenicity of <i>Clostridium perfringens</i>	4
2.2. Toxins and virulence genes of <i>C.perfringens</i>	7
2.3. Antimicrobial resistance genes of <i>C.perfringens</i>	12
2.4. Sequencing of some genes and toxins of <i>C.perfringens</i>	16
2.5. Random Amplified Polymorphic DNA Analysis (RAPD)	21
3. Material and Methods	24
3.1. Material	24
3.1.1. Samples and Isolates	24
3.1.2. Media used for isolation and identification	25
3.1.3. Reagents used for extraction of DNA	25
3.1.4. Equipment and apparatuses used for extraction of nucleic acids	26
3.1.5. PCR Master Mix used for cPCR	26
3.1.6. Oligonucleotide primers used for conventional PCR	26
3.1.7. DNA Molecular weight marker	28
3.1.8. Material used for agarose gel electrophoresis	28
3.1.9. Equipment and apparatuses used in cPCR	29
3.1.10. Material used for PCR product purification	30
3.1.11. Material used for sequencing of the purified PCR product	30
3.2. Methods	30
3.2.1.Collection of samples	30
3.2.2.Isolation of C.perfringens	30
3.2.3. Extraction of DNA	31
3.2.4. Preparation of PCR Master Mix	32
3.2.5. Cycling conditions of the primers during cPCR	33

Item	Page
3.2.6. DNA Molecular weight marker	34
3.2.7. Agarose gel electrophoresis	34
3.2.8. Methods for purification of the PCR products	35
3.2.9. Method used for RAPD technique	36
3.2.10. Sequencing reaction	36
3.2.11. Purification of the sequence reaction	37
3.2.12. Loading the sequencer machine	38
3.2.13. Phylogenetic analysis	38
4. Results	39
4.1. Incidence of <i>C. perfringens</i> in the tested herbs and spices	39
4.2.Results of Alpha, Beta, Epsilon, Iota toxins and Enterotoxin	39
4.3.Results of <i>bla</i> , <i>tet</i> K nd <i>erm</i> B Genes	43
4.4.Results of Random amplified polymorphic DNA (RAPD)	48
4.5.Results of Sequencing	50
5. Discussion	55
6. Summary	
7. References	
8. Arabic summary	Ι

LIST OF TABLES

Table No.	Title	Page
1	Samples and isolates	24
2	Oligonucleotide primer sequences	27
3	Preparation of four Clostridium toxins uniplex PCR Master Mix	33
4	Preparation of uniplex PCR Master Mix	33
5	Cycling conditions of the different primers during cPCR	34
6	Preparation of master mix	36
7	Toxinotyping of <i>C. perfringens</i> isolated from herbs and spices	39
8	Multidrug resistance (<i>bla</i> , <i>tetK</i> and <i>ermB</i>) genes of <i>C</i> . <i>perfringens</i> isolated from herbs and spices	43
9	Similarity/Diversity index calculated by Jaccard/Tanimoto coefficients; S., Sample.	49

LIST OF FIGURES

Figure No.	Title	Page
1	(a)&(b) PCR results of genetic toxinotyping of <i>C. perfringens</i> isolated from herbs and spices	41
2	(a)&(b) PCR results of genetic toxinotyping of <i>C. perfringens</i> isolated from herbs and spices for enterotoxin	42
3	PCR results of <i>bla</i> gene of <i>C. perfringens</i> isolated from herbs and spices	45
4	PCR results of <i>tet</i> K gene of <i>C. perfringens</i> isolated from herbs and spices	46
5	PCR results of <i>erm</i> B gene of <i>C. perfringens</i> isolated from herbs and spices	47
6	Representative RAPD-PCR patterns	48
7	Dendrogram pattern of similarity among selected strains of <i>C</i> . <i>perfringens</i>	49
8	Nucleotides (a) and amino acid (b) graphic view of <i>cpa</i> sequencing analysis	51
9	Phylogenetic analysis of nucleotide/amino acid sequences of <i>cpa</i> coding gene	52
10	Nucleotides (A) and amino acid (B) graphic view of <i>bla</i> sequencing analysis	53
11	Phylogenetic analysis of nucleotide/amino acid sequences of <i>bla</i> coding gene	54

6. SUMMARY

Molecular evaluation studies to determine the extent of pathogenicity of microbes are principal prerequisites to control or reduce safety hazards in food or feed or their additives. The International Organization for Standardization (ISO, Geneva, Switzerland) has regulated requirements for food safety hazards, including microbiology end point with final goal of human and animal safety and welfare.

From this concept, the present study was designed to investigate the toxicity of *Clostridium perfringens* isolated from herbs and spices delivered to and distributed all over the Egyptian markets. Fulfilling this aim required identification of different toxins produced by *C*. *perfringens* isolates, detection of their virulence and antimicrobial resistance genes, sequencing of the genes encoding such toxins and virulence factors.

C. perfringens is among microbes that cause foodborne illnesses and is a genetically diverse organism; therefore, it represents a focus for many microbiologists. For too many years, *C. perfringens* had been classified into five toxinotypes, A, B, C, D, and E, based on the production of four major toxins, namely, *CPA*, *CPB*, *ETX*, and *ITX*. Recently, an updated toxinotyping system based on the production of six major toxins, namely, *CPA*, *CPB*, *ETX*, *ITX*, *CPE*, and *net*B, has been proposed after incorporation of two new toxinotypes (F and G). In this new classification, *C. perfringens* type A strains are associated with gas gangrene but not with human food poisoning. *C. perfringens* type B, C, and D strains are often associated with enteric diseases in animals.

Identification and characterization of *C. perfringens* isolated from various sources have been done by many researchers, including us who found 33 positive isolates from herbs and spices commonly distributed in the Egyptian market.

PCR is considered as a rapid and useful method for genotyping of *C. perfringens*. In the present study, PCR was applied using primers for *alpha*, *beta*, *epsilon*, *iota* and enterotoxin toxin genes upon which identification and typing of *C. perfringens* depend. Results revealed that the 33 isolates from herbs and spices were positive for *alpha* toxin gene, 10 isolates were positive for *beta* toxin gene and only two isolates were positive for *epsilon* toxin gene, no

strains were positive for *iota* toxin-encoding gene, while five strains are positive for enterotoxin-encoding gene.

RAPD (Random Amplification of Polymorphic DNA) analysis is a simple type of PCR, using only a single short random primer (8–12 nucleotides). It is applied in the present study on twenty isolates. The results were confirmatory to those of conventional PCR. Similarity among RAPD analysis products from 20 isolates from herbs and spices was tested and revealed overall average coefficient of 0.26.

In a second run, PCR was applied to demonstrate *net*B and *tpe*L, which have lesser interest in most studies, virulence factors and *bla*, *tet*K and *erm*B antimicrobial resistance factors as well the link between these two virulence determinants and antimicrobial resistance in *C. perfringens* isolated from herbs and spices. The results indicated the low (27.3 %, 9 out of 33) incidence of *tpe*L positive clostridial strains isolated from herbs and spices and absence of those with *net*B gene.

The obtained multiplex PCR products indicated presence of *bla*, *tet*K and *erm*B genes in *C. perfringens* isolates from herbs and spices. *bla* gene was detected in 21 out of 33 isolates (63.63 %); *tet*K in 13 out of 33 (39.4 %); while *erm*B was detected in only one isolate out of the 33 (3 %).

This assay aimed at exploring the genetic basis of our previous findings of antibiotic susceptibility test (AST) that found *C. perfringens* isolates were resistant to Clindamycin, Vancomycin, Tetracycline and Erythromycin with inhibition zones of 6.28 ± 0.63 , 8.78 ± 0.41 , 9.63 ± 0.63 and 9.84 ± 0.66 mm, respectively. The finding of *bla* gene may explain the resistance of *C. perfringens* to Clindamycin and Vancomycin but the susceptibility to Penicillin-G (inhibition zone = 16.6 ± 1.16 mm) remains to be understood. Highest susceptibility of the microbe to Ampicillin-Salbactam (19.4 \pm 0.98 mm) could be explained post-transcriptionally, where sulbactam inhibits beta-lactamase after its production from the bacterial cell.

The finding of amplified bands of *tet*K gene fragments in *C. perfringens* isolated from herbs (39.4 %) may partially explain and parallel with the recorded resistance of isolates to Tetracycline (8.8 ± 0.4 mm inhibition zone).

In contrast, the finding of only 3 % of *erm*B-positive strains is not parallel with and cannot explain the resistance of isolates to Erythromycin (9.8 \pm 0.7 mm inhibition zone). This might refer to presence of other mechanisms exhibited by the bacterium for resistance against Erythromycin.

Sequence analysis was conducted upon the two genes with the highest incidence in the tested isolates, *viz alpha*-toxin encoding- and *bla* genes (100 & 63.63 %, respectively). The analyses were done on five *C. perfringens* type A isolates obtained from different representative source samples of herbs and spices in order to detect genetic diversity of alpha toxinencoding gene. The obtained sequences were first analysed using BLAST tool of GenBank. The BLAST result showed maximum identity ranging from 100% to 96.3% with *C. perfringens alpha* toxin-encoding gene. Data of this study showed that sequence alignment of 402 nucleotides and deduced amino acids of *cpa* isolated from herbs and spices have high similarity and conservation with little diversities compared with those of *cpa* of other global strains.

Despite its apparent minimal contribution to antimicrobial resistance, yet, because of its high incidence in our tested isolates, its sequencing analysis was essential to map the epidemiology of *C. perfringens* infections caused by herbs and spices or food containing them and to detect genetic diversity of *bla*-gene. The analysis was done on random five *C. perfringens* isolates that was *bla*-positive obtained from different representative source samples of herbs and spices. The obtained sequences were analyzed using BLAST tool of GenBank. The BLAST result showed maximum identity ranging from 100% down to 97.3% with *C. perfringens bla*-gene. Data of this study showed that sequence alignment of first 80 nucleo-tides from total of 770 and the deduced amino acids of *bla*-gene first fragment isolated from herbs and spices. The overall sequence has high similarity and conservation with little diversities compared with those of *bla*-gene sequence of other global strains.

CONCLUSION:

From molecular data presented above, it could be concluded that, toxigenic strains of *C*. *perfringens* were detected in herbs and spices distributed in the Egyptian market with higher occurrence of *alpha* toxin-coding gene and absence of *iota* toxin. *C. perfringens* isolated from herbs and spices have a high similarity among global isolates of epidemiological concern. In

addition, *cpa* toxin-coding gene share common characterization with the sequences submitted to GenBank. Therefore, we strongly recommend making food professionals and organizations aware of this problem to take strict measures to avoid irrational use of herbs and spices whether fresh or dried.

Furthermore, strains of *C. perfringens* isolated from herbs and spices retailed in the Egyptian market have higher occurrence of *tpeL* but not *netB* toxin coding genes. Resistance of *C. perfringens* to tetracycline is partially dependent on presence of *tet*K gene, while sensitivity to Penicillin is evident despite the presence of *bla*-gene at a high rate among isolates that has a high similarity to the sequences submitted to GenBank among global isolates of epidemiological concern. These findings expand knowledge about *C. perfringens* isolated from herbs and spices as food additives, which provide scientific basis for efficient prevention and intervention of *C. perfringens*-caused problems in man and animals.