EFFECT OF IRRIGATION WATER QUALITY AND SOME PRACTICES OF ORGANIC FARMING ON CROP PRODUCTIVITY, QUALITY AND SOIL FERTILITY

Submitted By

Asmaa Abd El-Hakam Mohamed Abd El-Ghany

B.Sc. of Agricultural Sciences, Faculty of Agriculture, Zagazig University, 2004
Diploma in Environmental Sciences, Faculty of Graduates Studies & Environmental Research, Ain Shams University, 2006
M. Sc. in Environmental Sciences, Faculty of Graduates Studies & Environmental Research, Ain Shams University, 2014

A Thesis Submitted in Partial Fulfillment Of The Requirement for the Doctor of Philosophy Degree

> In Environmental Sciences

Department of Environmental Agricultural Sciences Faculty of Graduates Studies & Environmental Research Ain Shams University

2021

ABSTRACT

Three field trials were conducted at Al-Betaia village – Mashtoul El-Souk District –Sharqia Governorate during two successive winter seasons (2016-2017, 2017-2018). The main objective of this study is detecting the effect of irrigation water quality and some practices of organic farming on wheat (Triticum aestivum L.) crop productivity, quality and soil fertility.

The three experiments included the same treatments which were arranged in split-split plot design including three rates of spraying algae extract (zero, 0.50, 0.75 cm/l), three doses of compost fertilizer(zero, 6, 8 ton/fed.) and two rates of bio fertilizer(zero, cerialine + phospharine + potassium dissolving bacteria). Wheat plants were sawn in the three sites. The first site was irrigated using potable water (Nile water) where the second site was irrigated with underground water, The third site was irrigated using the agricultural drainage water. At the same area wheat plants were cultivated on isolate experiment included the recommended NPK fertilizer to evaluate such treatments for the productivity of wheat crop from the pratical point of view.

The most important results could be summarized in both seasons as follows:

- 1- In most cases, grain yield and yield components of wheat plants were responded significantly, where the highest value of such treatment resulted in the highest grain yield and best yield components. The result of this study improved that the trible treatment of 0.75 cm/l as algae extract spray, 8 ton/fed. of Compost fertilizer in the presence of bio fertilizer was superior comparing the other treatments.
- 2- The results obtained from applying the recommended NPK fertilizer were relatively near to those obtained from the trible treatment of 0.75 cm/l as algae extract spray ,6 or 8 ton/fed. of compost fertilizer in the presence of bio fertilizer.
- 3- Nutrient contents of N,P and K elements in grain and straw of wheat were increased in most cases according to high levels of such treatments comparing to the control ones.

- 4- The obtained results in two growing seasons were the best when wheat plants were irrigated by Nile water in comparison with the other two sources (underground and agricultural drainage water).
- 5- Some chemical properties of the alluvial soil under study including organic matter content, soil salinity and the degree of acidity (PH) were estimated towards the safe state compared to its values before conducting the three experiments through the two growing seasons

Key words: Irrigated water quality- Compost- Bio fertilizer- Algae extracts.

List of Contents

Title	Page No.
ABSTRACT	I
List of Contents	
List of Tables	V
List of Figures	XI
1.INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Effect of foliar application as (algae extract) on:	4
2.1.1. Yield and yield components:	5
2.1.2. plant nutrients and protein:	7
2.2. Effect of organic fertilizers application :	8
2.2.1. Yield and yield components	9
2.2.2. plant nutrients and protein:	13
2.2.3.Some Soil chemical properties:	15
2.3. Effect of bio-fertilizers :	20
2.3.1 Yield and yield components	22
2.3.2 Plant nutrients and protein:	27
2.3.3.Some Soil Chemical properties:	29
2.4. Effect of chemical fertilizer:	31
2.4.1.Yield and yield components	31
2.4.2. Plant nutrients and protein	32
2.4.3.Some Soil Chemical properties:	34
3. MATERIALS AND METHODS	35
3.1. The experimental design	35
3.2. Sampling technique	38
3.2.1. Yield component parameters :	38

3.2.2. Yield	
3.2.3. Soil sampling	39
3.2.4. Methods of Soil analysis	39
3.2.5. Water analysis	40
3.3. Statistical analysis	41
4. RESULTS AND DISSCUSSION	42
4.1 Effect of spraying wheat plant with algae extract and soil a	pplication of
compost and biofertilizer under different irrigation water quali	ities on wheat
production	
4.1.1. Yield components	42
4.1.1.1. Plant height (cm)	42
4.1.1.2. Number of spikes /m ²	48
4.1.1.3. Number of grains/spike	53
4.1.1.4. Grains weight/spike (g)	59
4.1.1.5. Weight of 1000 grain (g)	63
4.1.2 Yield	69
4.1.2.1.Grain yield (kg/fad)	69
4.1.2.2. Straw yield (kg/fad)	79
4.1.2.3.Biological yield (kg/fad)	84
4.1.3. Harvest index %	88
4.2. Plant nutrients:	
4.2.1. N , P ,K and protein percentage in wheat plants:	94
4.2.1.1 N , P ,K% in wheat grains:	94
4.2.1.2 N , P ,K% in wheat straw:	105
4.2.1.3 Protein percentage in wheat grains:	115
4. 3. Some soil properties after harvesting:	
4. 3. 1. Soil available of N,P,K (mgkg ⁻¹) as well as organic matter	r percentage 120
4. 3. 1.1. Soil available of N,P,K (mgkg ⁻¹)	120
4. 3. 1.2. Soil organic matter percentage	131
4. 3. 1.3. soil salinity	136
4. 3. 1.4. Soil PH	141
SUMMARY	
REFERENCES	150
الملخص العربى	1
	4

List of Tables

Table No.	Title	Page No.
Table 1: The Chemica	l composition of algae extract was	given36
Table 2: Some physic	al and chemical analysis of compo	st was given37
Table 3: Some physic in both seas	al and chemical characteristics of sons.	the experimental soil40
Table 4: Some chemic	al characteristics of the used exper	imental water41
Table 5: Mean values of compost an 2016/2017 a	of plant height cm as affected by sp d biofertilizer under Nile water and 2017/2018 growing seasons	pray of algae extract, irrigation source in 45
Table 6: Mean values	s of plant height as affected by s	pray of algae extract,
compost and	d biofertilizer with underground w	vater irrigation source
in 2016/201	7 and 2017/2018 growing seasons.	46
Table 7: Mean values	of plant height cm as affected by s	spray of algae extract,
compost an	nd biofertilizer under agricultu	ural drainage water
irrigation so	urce in 2016/2017 and 2017/2018	growing seasons47
Table 8: Mean values	of spikes no. /m2 as affected by s	spray of algae extract,
compost an	d biofertilizer under Nile water	irrigation source in
2016/2017 a	and 2017/2018 growing seasons	
Table 9: Mean values compost and in 2016/201	of spikes no. /m2 as affected by s d biofertilizer with underground w 7 and 2017/2018 growing seasons.	spray of algae extract, vater irrigation source
Table 10: Mean values	s of spikes no. /m2 as affected by s	spray of algae extract,
compost ar	nd bio fertilizer under agricult	tural drainage water
irrigation so	urce in 2016/2017 and 2017/2018	growing seasons52
Table 11: values of g	grains no./spike as affected by sp	pray of algae extract,
compost and	d bio - fertilizer under Nile wate	er irrigation source in
2016/2017 a	and 2017/2018 growing seasons	
Table 12: values of g	grains no. /spike as affected by sp	pray of algae extract,
compost and	d biofertilizer with underground w	vater irrigation source
in 2016/201	7 and 2017/2018 growing seasons.	
Table 13: values of g	rains no. /spike as affected by sp	pray of algae extract,
compost an	nd biofertilizer under agricultu	ural drainage water
irrigation so	urce in 2016/2017 and 2017/2018	growing seasons
Table 14: Mean values	s of grains weight / spike g as affer	cted by spray of algae
extract, com	post and biofertilizer under Nile v	vater irrigation source
in 2016/201	7 and 2017/2018 growing seasons.	60

Cable 15: Mean values of grains weight / spike g as affected by spray of algaeextract, compost and biofertilizer with underground water irrigationsource in 2016/2017 and 2017/2018 growing seasons
Cable 16: Mean values of grains weight / spike g as affected by spray of algaeextract, compost and biofertilizer under agricultural drainage waterirrigation source in 2016/2017 and 2017/2018 growing seasons
Yable 17: Mean values of 1000 grain weight g as affected by spray of algaeextract, compost and bio fertilizer under Nile water irrigation sourcein 2016/2017 and 2017/2018 growing seasons
Cable 18: Mean values of 1000 grain weight g as affected by spray of algaeextract, compost and biofertilizer with underground water irrigationsource in 2016/2017 and 2017/2018 growing seasons
Yable 19: Mean values of 1000 grain weight g as affected by spray of algaeextract, compost and bio fertilizer under agricultural drainage waterirrigation source in 2016/2017 and 2017/2018 growing seasons
Cable 20: The relative increase percentage of wheat yield components as affected by main treatments under various irrigation water in the second season
Table 21: Mean values of grain yield kg/fad as affected by spray of algae extract, compost and biofertilizer under Nile water irrigation source in 2016/2017 and 2017/2018 growing seasons
Table 22: Mean values of grain yield kg/fad as affected by spray of algae extract, compost and bio fertilizer with underground water irrigation source in 2016/2017 and 2017/2018 growing seasons
Cable 23: Mean values of grain yield kg/fad as affected by spray of algaeextract, compost and bio fertilizer under agricultural drainage waterirrigation source in 2016/2017 and 2017/2018 growing seasons
Sable 24: Mean values of straw yield kg/fed as affected by spray of algae extract, compost and bio fertilizer under Nile water irrigation source in 2016/2017 and 2017/2018 growing seasons
Cable 25: Mean values of straw yield kg/fed as affected by spray of algaeextract, compost and biofertilizerwithundergroundwaterirrigation source in 2016/2017 and 2017/2018 growing seasons
Table 26: Mean values of straw yield kg/fed as affected by spray of algae extract, compost and bio fertilizer under agricultural drainage water irrigation source in 2016/2017 and 2017/2018 growing seasons
Cable 27: Mean values of biological yield kg/fad as affected by spray of algae extract, compost and biofertilizer under Nile water irrigation source in 2016/2017 and 2017/2018 growing seasons.85

Table 28: Mean values of biological yield kg/fed as affected by spray of algae extract, compost and biofertilizer with underground water irrigation source in 2016/2017 and 2017/2018 growing seasons	86
Table 29: Mean values of biological yield kg/fed as affected by spray of algae extract, compost and biofertilizer under agricultural drainage water irrigation source in 2016/2017 and 2017/2018 growing seasons	87
Table 30: Mean values of harvest index % as affected by spray of algae extract, compost and biofertilizer under Nile water irrigation source in 2016/2017 and 2017/2018 growing seasons	90
Table 31: Mean values of harvest index % as affected by spray of algaeextract, compost and biofertilizer irrigated with underground watersource in 2016/2017 and 2017/2018 growing seasons	91
Table 32: Mean values of harvest index % as affected by spray of Algae extract, compost and biofertilizer irrigated with agricultural drainage water source in 2016/2017 and 2017/2018 growing seasons.	92
Table 33: The relative increase percentage of wheat yield as affected by main treatments under various irrigation water in the second season	93
Table 34: Mean values of grain nitrogen % as affected by spray of algae extract, compost and biofertilizer under Nile water irrigation source in 2016/2017 and 2017/2018 growing seasons	96
Table 35: Mean values of grain nitrogen % as affected by spray of algae extract, compost and biofertilizer irrigated with underground water source in 2016/2017 and 2017/2018 growing seasons	97
Table 36: Mean values of grain nitrogen % as affected by spray of algae extract, compost and biofertilizer under agricultural drainage water irrigation source in 2016/2017 and 2017/2018 growing seasons	98
Table 37: Mean values of grain phosphorous % as affected by spray of algae extract, compost and biofertilizer under Nile water irrigation source in2016/2017 and 2017/2018 growing seasons	99
Table 38: Mean values of grain phosphorous % as affected by spray of algae extract, compost and biofertilizer with underground water irrigation source in 2016/2017 and 2017/2018 growing seasons	.100
Table 39: Mean values of grain phosphorous % as affected by spray of algae extract, compost and biofertilizer under agricultural drainage water irrigation source in 2016/2017 and 2017/2018 growing seasons	.101
Table 40: Mean values of grain potassium % as affected by spray of algae extract, compost and bio fertilizer under Nile water irrigation source in 2016/2017 and 2017/2018 growing seasons.	.102

Table 41: 1 e	Mean values of grain potassium % as affected by spray of algae extract, compost and bio fertilizer irrigated with underground water source in 2016/2017 and 2017/2018 growing seasons	103
Table 42: 1 e i	Mean values of grain potassium % as affected by spray of algae extract, compost and bio fertilizer under agricultural drainage water irrigation source in 2016/2017 and 2017/2018 growing seasons	104
Table 43: e	Mean values of straw nitrogen % as affected by spray of algae extract, compost and biofertilizer under Nile water irrigation source in 2016/2017 and 2017/2018 growing seasons	106
Table 44: e	Mean values of straw nitrogen % as affected by spray of algae extract, compost and bio fertilizer irrigated with underground water source in 2016/2017 and 2017/2018 growing seasons	107
Table 45: e	Mean values of straw nitrogen % as affected by spray of algae extract, compost and bio fertilizer under agricultural drainage water irrigation source in 2016/2017 and 2017/2018 growing seasons	108
Table 46: M e i	Mean values of straw phosphorous % as affected by spray of algae extract, compost and bio fertilizer under Nile water irrigation source in 2016/2017 and 2017/2018 growing seasons	109
Table 47: Me	Mean values of straw phosphorous % as affected by spray of algae extract, compost and bio fertilizer irrigated with underground water source in 2016/2017 and 2017/2018 growing seasons	110
Table 48: M e v s	Mean values of straw phosphorous % as affected by spray of algae extract, compost and bio fertilizer with under agricultural drainage water irrigation source in 2016/2017 and 2017/2018 growing seasons.	111
Table 49: 1 e s	Mean values of straw potassium % as affected by spray of algae extract, compost and bio - fertilizer under Nile water irrigation source in 2016/2017 and 2017/2018 growing seasons	112
Table 50: e	Mean values of straw potassium%as affected by spray of algae extract, compost and bio fertilizer irrigated with underground water source in 2016/2017 and 2017/2018 growing seasons	113
Table 51: 1 e i	Mean values of straw potassium % as affected by spray of algae extract, compost and bio fertilizer under agricultural drainage water irrigation source in 2016/2017 and 2017/2018 growing seasons	114
Table 52: M c 2	Mean values of grain protein% as affected by spray of algae extract, compost and bio- fertilizer under Nile water irrigation source in 2016/2017 and 2017/2018 growing seasons.	116
Table 53: N c i	Mean values of grain protein % as affected by spray of algae extract, compost and bio fertilizer irrigated with underground water source in 2016/2017 and 2017/2018 growing seasons	117

Table 54: Mean values of grain protein % as affected by spray of algae extract, compost and bio fertilizer under agricultural drainage water irrigation source in 2016/2017 and 2017/2018 growing seasons118
Table 55: The relative increase percentage of grain NPK and protein by main treatments under various irrigation water in the second season
Table 56: Mean values of soil available N mgkg-1 as affected by spray of algae extract, compost and bio fertilizer under Nile water irrigation source in 2016/2017 and 2017/2018 growing seasons
Table 57: Mean values of soil available N mgkg-1 as affected by spray of algae extract, compost and biofertilizer irrigated with underground water source in 2016/2017 and 2017/2018 growing seasons123
Table 58: Mean values of soil available N mgkg-1 as affected by spray of algae extract, compost and bio fertilizer under agricultural drainage water irrigation source in 2016/2017 and 2017/2018 growing seasons
Table 59: Mean values of soil available P mgkg-1 as affected by spray of algae extract, compost and bio fertilizer under Nile water irrigation source in 2016/2017 and 2017/2018 growing seasons125
Table 60: Mean values of soil available P mgkg-1 as affected by spray of algae extract, compost and bio fertilizer irrigated with underground water source in 2016/2017 and 2017/2018 growing seasons126
Table 61: Mean values of soil available P mgkg-1 as affected by spray of algae extract, compost and bio fertilizer under agricultural drainage water irrigation source in 2016/2017 and 2017/2018 growing seasons
Table 62: Mean values of soil available K mgkg-1 as affected by spray of algae extract, compost and bio fertilizer under Nile water irrigation source in 2016/2017 and 2017/2018 growing seasons
Table 63: Mean values of soil available K mgkg-1 as affected by spray of algae extract, compost and bio fertilizer irrigated with underground water source in 2016/2017 and 2017/2018 growing seasons
Table 64: Mean values of soil available K mgkg-1 as affected by spray of algae extract, compost and bio fertilizer under agricultural drainage water irrigation source in 2016/2017 and 2017/2018 growing seasons
Table 65: Mean values of soil OM % as affected by spray of algae extract, compost and bio fertilizer under Nile water irrigation source in 2016/2017 and 2017/2018 growing seasons
Table 66: Mean values of soil OM % as affected by spray of algae extract, compost and bio fertilizer irrigated with underground water source in 2016/2017 and 2017/2018 growing seasons

Table 67: Mean values of soil OM % as affected by spray of algae extract, compost and bio fertilizer under agricultural drainage water irrigation source in 2016/2017 and 2017/2018 growing seasons
Table 68: The relative increase percentage of soil NPK by main treatments under various irrigation water in the second season. 135
Table 69: Mean values of soil EC dsm-1 as affected by spray of A algaeextract, compost and bio fertilizer under Nile water irrigation sourcein 2016/2017 and 2017/2018 growing seasons.138
Table 70: Mean values of soil EC dsm-1 as affected by spray of A algae extract, compost and bio fertilizer irrigated with underground water source in 2016/2017 and 2017/2018 growing seasons
Table 71: Mean values of soil EC dsm-1 as affected by spray of A algae extract, compost and bio fertilizer under agricultural drainage water irrigation source in 2016/2017 and 2017/2018 growing seasons
Table 72: Mean values of soil PH as affected by spray of algae extract, compost and bio fertilizer under Nile water irrigation source in 2016/2017 and 2017/2018 growing seasons.143
Table 73: Mean values of soil PH as affected by spray of algae extract, compost and biofertilizer irrigated with underground water source in 2016/2017 and 2017/2018 growing seasons144
Table 74: Mean values of soil PH as affected by spray of algae extract, compost and biofertilizer under agricultural drainage water irrigation source in 2016/2017 and 2017/2018 growing seasons

List of Figures

Figures	No.	Title	Page No.
Fig. 1: Mair	effect of spraying algae extrac	et on wheat grain yield	75
Fig. 2: Main	effect of soil application of co	pmpost on wheat grain yield	76
Fig. 3: Mai	n effect of soil application of b	io fertilizer on wheat grain yie	eld77
Fig. 4: Inte	raction effect among spraying ompost ard biofertilizer on wh	g algae extract, soil applicati eat grain yield	ion of 78