Kafrelsheikh University Faculty of Agriculture Economic Entomology Department

Natural Enemies Occurring in Rice Fields with a Special Reference to the Egg Parasitoid, *Trichogramma evanescens* Westwood

BY

ELIZABEATH ZAKARIA SHENISHEN

B.Sc. (Agric.), Tanta University, 2010

M. Sc., Agricultural Sciences (Economic Entomology),

Tanta University, 2016

Thesis Submitted in Partial Fulfillment for the

Degree of Ph. D (Economic Entomology)

Economic Entomology Department

Faculty of Agriculture

Kafrelsheikh University

(2021)

CONTENTS

Abstract
Introduction1
REVIEW OF LITERTURE
1. Survey studies4
1.1. Insect pests4
1.2.Natural enemies
1.2.1. Insect predators
1.2.2. Insect parasitoids9
2.Factors Affecting Biological Aspects of the Egg Parasitoid,
Trichogramma evanecsens12
2.1. Cold storage of non-parasitized host egg12
2.2. Cold storage of parasitized host egg1
2.3. Effect of <i>T. evanescens</i> emerging time15
2.4. Age of host eggs1
2.5. Size of host eggs1
3. Field evaluation to release of Trichogramma evanescens to
control rice stem porer, Chilo agamemnon19
MATERIAL AND METHODS24
Study site
1. Survey of insect pests and natural enimes

1.1. Pit-fall traps	24
1.2. Sweeping net	25
1.3. Hand collecting	25
2. 2. Mass rearing	25
2.1. Angoumois grain moth, Sitotroga cerealella	25
2.2. Trichogramma evanecsens	26
3. Factors affecting the biological aspects of Tri	<i>chogram</i> ma
evanecsens	26
3.1.Cold storage of the non-parasitized eggs	of <i>Sitotroga</i>
cerealella	26
3.2. Cold storage of the parasitized eggs	of sitotroga
cerealella	27
3.3. Trichogramma evanecsens emerging time	28
3.4. Age of Sitotroga cerealella eggs	28
3.5. Size of <i>Sitotroga cerealella</i> eggs	28
4. Field evaluation of release of Trichogramma evanesce	ens to control
rice stem porer, Chilo agamemnon	28
5. Statistical analysis	
RESULTS AND DISCUSSION	31
1.Survey	31
1.1. Insect pests	31
1.2. Insect predators	34
1.3. Hymenopteran parasitoids	35
2. Factors affecting the biological aspects of 7	`richogramma
evanescens	
2.1. Cold storage of the non parasitized eggs of Sitotroga	cerealella
Emergence percentage of <i>T. evanescens</i>	37
Female's percentage of <i>T. evanescens</i>	

Female longevity of T. evanescens	37
2.2. Cold storage of the parasitized eggs of Sitotroga c	erealella
Female's percentage of T. evanescens	44
Impacts of various cold storage times on F1 progeny	of T. evanescens
	44
2.3. Emerging time	48
Longevity	50
2.4 Age of Sitotroga cerealella eggs	53
Female longevity of T. evanescens	
Effect of host egg age on the emergence of F1	progeny of T.
evanescens	56
2.5. Size of Sitotroga cerealella eggs	
Female longevity of T. Evanescens	60
F1 progeny of T. evanescens	61
2. Field evaluation to the release of <i>Trichogramma e</i> control rice stem borer, <i>Chilo agamemnon</i>	
SUMMARY	65
REFRANCE	70
ARABIC SUMMARY	

LIST OF TABLES

Table (1): Survey of insect pests inhabiting rice fields, during 2017
and 2018 seasons at, Sakha Agricultural Research Station,
Kafrelsheikh region32
Table (2) : Survey of insect predators collected from rice nursery and permanent field, during 2017 and 2018 seasons, Kafrelsheikh region
Table (3):Survey of hymenopteran parasitoids collected from rice fields, during 2017 and 2018 seasons, Kafrelsheikh region
Table (4): Impact of using cold-stored non-parasitiazed eggs ofSitotroga cerealella on the biological aspects ofTrichogramma
evanescens
Table (5): Reductions in Trichogramma evanescens biological aspectsreared on cold –stored non-parasitized eggs of Sitotrogacerealella for different durations
Table (6): Pearson correlation coefficients for time of parasitoid emergence and F ₁ emergence parama
Table (7): Impact of using cold-stored parasitized eggs of SitotrogacerealellaonbiologicalaspectsofTrichogrammaevanescens42.
Table (8): Reductions in Trichogramma evanescens biological aspects reared on cold –stored parasitized eggs of Sitotroga cerealella for different durations
Table (9): Effect of using cold-stored parasitized eggs of Sitotrogacerealella on the emergence of F1 progeny of Trichogramma
<i>evanescens</i>
F1 progeny, and % emergence of F1 progeny48 Table (11) : Emergence percentage of <i>T. evanescens</i> adults and sex ratio as influenced by emerging time (first generation49
Table (12): Pearson correlation coefficients for some biological aspects of Trichogramma evanescens 50
Table (13) : Longevities of emerging <i>Trichogramma evanescens</i> as
influenced by emerging time of adults
emergence and longevity52
Table(15): Pearson correlation coefficients for time of parasitoidemergence and F1 emergence paramaters52

 Table (17): Effect of host egg age on biological aspects of

 Trichogramma

- Table (20): Effect of host egg age on the emergence of F1 progeny of

 Trichogramma evanescens

 57
- Table (22):Effect of host egg size on parasitism by Trichogrammaevanescenseparasitoidsemergencepercentageandsexratio59

- Table (25): Pearson correlation coefficients host egg size and
parassitoids emergence percentage and sex ratio......60

Abstract

The world rice crop is attacked by more than 100 species of insects, 20 of them can cause economic damage. Insect pests that can cause significant yield losses are stem borers, leaf hopper and plant hoppers, chironomids and stink bugs. Biological control can play an essential role in reducing pest population in field crops,. *Trichogramma evanescens* s an effective egg parasitoid, and attacks a variety of serious insect crop pests especially lepidopterous ones in their early stages (their eggs). Eggs of *Sitotroga cerealella* were as one of the most commonly used as natural host for rearing *Trichogramma* spp.

The efficiency of *Trichogramma* parasitoids is negatively affected by the cold storage of the host eggs that are exposed to the parasitoid after being stored for various periods. Cold storage has an impact on the efficiency of *Trichogramma* parasitoids, female percentage and female longevity.

In addition, it was found that the earlier emerging parasitoids have higher biological aspects compared to later emerging ones.

Host egg age and size has asignificant effects on the rate of parasitism by *Trichogramma evanescens* increase in host egg age, reduce rate of parasitism. By contrast, the parasitism increases by increase of host egg size.

The field release of T *evanescens* proved to be efficient in controlling the rice stem borer, *chilo agamemnon* in both dead hearts and white heads.