

Tanta University Faculty of Agriculture Plant Protection Dep.

Studies on the Melon Aphid, *Aphis gossypii* Glover, as a Main Vector of Papaya Ringspot Virus on Squash Plants in Kafr El-Sheikh Governorate

By

Abdel Rahman Ragab Ali Abu-Shaishaa

B.Sc. Agric. (Pesticides) Kafrelsheikh University, 2005 M.Sc. Agric. (Pesticides) Kafrelsheikh University, 2016

A Thesis Submitted in Partial Fulfillment of the requirement for the Degree of DOCTOR OF PHILOSOPHY

> In Agricultural Sciences (Pesticides)

Plant Protection Department (Pesticides) Faculty of Agriculture Tanta University

2021

ABSTRACT

Squash, Cucurbita pepo, L., is one of the most popular vegetable crops In Egypt. Aphids, Aphis gossypii Glov. attack the plants causing severe damage due to sucking plant sap as well as virus transmission such as Papaya ringspot virus-W (PRSV-W). Therefore, field experiment was conducted at Kafr El-Sheikh Governorate to evaluate the efficacy of three insecticides: pymetrozine (50 % WG), flonicamid (50 % WG) and imidacloprid (20 % SC)as well as KZ oil (95 % EC) against aphids, the spread of PRSV and marketable yield of squash. Every tested compound as well as control was replicated three times in a complete randomised block design. The obtained results indicated that imidacloprid significantly was the most effective compound against the aphid population, while KZ oil was the least effective one but, vice versa was observed in reducing the spread of PRSV. The marketable yield of squash was negatively correlated with incidence of PRS virus and aphid population. Also, the incidence of virus was correlated positively with the aphid population.

The laboratory experiments were further conducted to evaluate effect of the tested compounds on acquisition and inoculation of virus and effect of virus-infected squash plants on the biology of A. gossypii in addition to effect of three aphidophagous predators: larvae of Chrysoperla carnea (Stephens), Adalia bipunctata (L.) and Syrphus sp., on the spread of PRSV in squash plants by A. gossypii. Statistical analysis of data revealed that flonciamid and pymetrozine significantly reduced acquisition and inoculation of virus compared to control and the reduction was comparable to KZ oil application. Higher fecundity, shorter development of nymphs and longer longevity of adults were occurred when aphids fed on virus-infected plants compared with those fed on non-infected plants. Additionally, all life table parameters were significantly higher for aphids fed on infected plants than noninfected ones. The effects of three predators ;Chrysoperla carnea (Stephens), Adalia bipunctata (Linnaeus), and Syrphus sp. on the dispersal of the aphid vector A. gossypii and PRSV transmission rate revealed that initially (after 1 day), C. carnea and A. bipunctata, statistically increased aphid colonization on nearby plants than Syrphus sp., thus the transmission rate of virus was greater in the presence of C. carnea, A. bipunctata than Syrphus sp. In contrast, after 7 days, the virus transmission increased somewhat, but without significant difference between the treatments.

CONTENTS

I. INTRODUCTION	1
II. Review of literature	5
A. Insecticides, mineral and plant oils as managed	gement
tools to control papaya ringspot virus (PRSV) ar	nd other
non-persistent aphid-vectored viruses	5
B. Effects of plant viruses on performance and b	behavior
of virus vectors	13
C. Influence of natural enemies on the spread of	of non-
persistently and persistently transmitted viruses b	oy aphid
vectors	
III. Materials and methods	23
A. Field experiments:	23
1. Efficacy of certain insecticides and mine	ral oil
against aphids and incidence of Papaya ringsp	ot virus
on squash plants:	
a) Plants and field experimental design:	23
b) Virus source and inoculum plants	24
c) Treatments:	
d) Sampling:	
(1) Aphids and associated predators	27
(2) Viral disease	27

	(4) Squash marketable yields:	29
(e) Statistical analysis:	29
<i>B</i> .	Laboratory studies:	29
	1. Effects of certain insecticides and KZ oil of	on
	survival of Aphis gossypii and its transmission	of
pa	paya ringspot virus (PRSV) on squash	30
ä	a) APHIDS	30
1	b) Plant material and cultivation	30
(c) Virus source and inoculum plants	30
(d) Insecticides and oil application	31
6	e) Experiments	32
	(1) Effect of certain insecticides and KZ oil	on A.
	gossypii under greenhouse conditions	32
	(2) Effect of insecticides and KZ oil on PI	RSV
	acquisition by A. gossypii	32
	(3) Effect of insecticides and KZ oil on PI	RSV
	inoculation by A. gossypii	33
	(4) Residual activity of insecticides and K	Z oil
	on PRSV transmission by A. gossypii	34
2	. Effect of PRSV-infected squash plants on bio	ology
an	d life table parameters of Aphis gossypii Glover	:35
ä	a) Host plants and PRSV inoculation	35
1	b) Experiments	36
(c) Data analysis	37
	3. The effect of predators on the spread of Pap	aya
rin	ngspot virus (PRSV) by Aphis gossypii Glover	38
5	a) Plant material and cultivation	38

b) Virus source and inoculum plants
c) Insects
(1) Effect of some predators on aphid dispersal
and spread of PRSV40
d) Statistical analysis
IV. Results and Discussion43
A. Field studies43
1. Effect of certain insecticides and mineral oil against
aphids on squash plants (Cucurbita pepo L.) under field
conditions:43
2. Effect of certain insecticides and mineral oil on
incidence of papaya ringspot virus in squash plants
under field conditions:49
3. Effect of certain insecticides and mineral oil on the
plant size and fruit yield of squash plants:58
4. Relationship between aphid population, incidence
of PRSV and fruit yield of squash:64
5. Effect of certain insecticides and mineral oil on the
natural enemies on squash plants:66
B. Laboratory studies70
1. Effects of certain insecticides and KZ oil on Aphis
gossypii and its transmission of papaya ringspot virus
(PRSV) on squash70
a) Effect of certain insecticides and KZ oil on A.
gossypii under laboratory conditions:

b) Evaluation of of insecticides and KZ oil against transmission of PRSV by Aphis gossypii Glover: -.72 Effect of insecticides and KZ oil on PRSV (1)acquisition by A. gossypii.....72 Effect of insecticides and KZ oil on PRSV (2)inoculation by A. gossypii74 Residual activity of insecticides and KZ oil (3)2. Effect of PRSV-infected squash plants on biology and life table parameters of Aphis gossypii Glover: -.82 Effect of PRSV-infected squash plants on biology a) of Aphis gossypii Glover.: -.....82 b) Effect of PRSV-infected squash plants on the life The effect of some predators on Aphis gossypii 3. Glov. dispersion and the spread of Papaya ringspot a) Effect of some predators on A. gossypii density b) Effect of predators on A. gossypii occurrence on c) Effect of predators on the spread of Papaya ringspot virus......100 V. SUMMARY......105 VI. **REFRENCES**.....111 1..... VII.

List of Tables

Table 1: Mineral oil and the insecticides used in the study26
Table (2): Mean number of aphids on squash plants treated with
mineral oil and insecticides during season of 201945
Table(3): Mean number of aphids on squash plants treated with
mineral oil and insecticides during season of 202047
Table (4): Effect of certain insecticides and mineral oil on
incidence of papaya ringspot virus (PRSV) disease on
squash plants during season of 201950
Table (5): Effect of certain insecticides and mineral oil on
incidence of papaya ringspot virus disease on squash plants
during season of 202052
Table (6): Effect of certain insecticides and mineral oil on the
plant size and fruit yield of squash during seasons of 2019
and 2020
Table (7): Correlation coefficient between aphid population,
percentage of incidence of PRS virus and fruit yield of
squash during2019 and 2020 seasons65
Table (8): Effect of certain insecticides and mineral oil on the
common predators in squash plants during season of 2019
Table (9): Effect of certain insecticides and mineral oil on the
common predators in squash plants during season of 2020

Table (10): Mortality rates of Aphis gossypii Glov. on squash
plants previously sprayed with the mineral oil and
insecticides71
Table (11): Effect of insecticides and KZ oil on PRSV
acquisition by Aphis gossypii Glover73
Table (12): Effect of insecticides and oils on PRSV inoculation
by Aphis. Gossypii Glov75
Table (13): Residual effect of single application of different
treatments on the transmission rate of papaya ringspot virus
(PRSV) on squash80
Table (14): Biology of A. gossypii on PRSV-infected and non-
infected squash plants84
Table (15): Life table parameters of A. gossypii on PRSV-
infected and non-infected squash plants
Table (16): Influence of the presence predators on the density
of Aphis gossypii (adults and nymphs) in the central PRSV-
source plant 1 and 7 days after infestation with aphids97

List of Figures

Fig. (1): Effect of certain insecticides and mineral oil on width
(cm) of squash plants during seasons of 201961
Fig. (2): Effect of certain insecticides and mineral oil on height
(cm) of squash plants during seasons of 201961
Fig. (3): Effect of certain insecticides and mineral oil on width
(cm) of squash plants during seasons of 202062
Fig. (4): Effect of certain insecticides and mineral oil on height
(cm) of squash plants during seasons of 202062
Fig.(5): Effect of certain insecticides and mineral oil on fruit
yield of squash during seasons of 201963
Fig.(6): Effect of certain insecticides and mineral oil on fruit
yield of squash during seasons of 202063
Fig. (7): Residual effect of single application of different
treatments on the transmission rate of papaya ringspot virus
(PRSV) on squash81
Fig.(8): Age-stage specific survival rate (s _{xj}) of A. gossypii
individuals on PRSV-infected and non-infected plants 88
Fig. (9): Population age-specific survival rate (l_x) , age-specific
fecundity (m_x) and the age-specific maturity $(l_x m_x)$ of A.
gossypii on PRSV-infected and non-infected plants90
Fig. 10: Age-stage specific life expectancy (e _{xj}) of A. gossypii
on PRSV-infected and non-infected plants92

Fig.	11: Age-stage reproductive value (v _{xj}) of A. gossypii	
	individuals on PRSV-infected and non-infected plants	93

- Fig. 12: The effect of predators on the percentage of peripheral squash plants infested with A. gossypii aphid after 1(A) and 7 (B) days......99