

HUAZHONG AGRICULTURAL UNIVERSITY 博士学位论文

DOCTOR'S DEGREE DISSERTATION 水稻早期生长耐盐性QTL定位及候选基因分析 QTL MAPPING AND CANDIDATE GENES OF SALINITY TOLERANCE AT THE EARLY STAGE IN RICE

研究生: CANDIDATE : WALID RAAFAT FAYEZ NAKHLA 学号: STUDENT NO : 2016305060012 专业: MAJOR : CROP GENETICS AND BREEDING 导师: SUPERVISOR : PROFESSOR YU SIBIN

> 中国 武汉 WUHAN, CHINA 2021 年 12 月 December, 2021

华中农业大学博士学位论文

水稻早期生长耐盐性QTL定位及候选基因分析 QTL MAPPING AND CANDIDATE GENES OF SALINITY TOLERANCE AT THE EARLY STAGE IN RICE

博士研究生:	WALID RAAFAT FAYEZ NAKHLA
学 号:	2016305060012
指导教师:	PROF. YU SIBIN
指导小组:	PROF. He Yuqing
	PROF. Zhao Yu
	ASSOCIATE PROF. He Hanzhi

专业:作物学 研究方向:作物遗传育种获得学位名称:博士学位 获得学位时间:2021年12月

华中农业大学植物科学技术院

2021年12月

Table of Contents

摘要	i
Abstract	iii
Abbreviations	v
1 . Introduction	1
1.1. Taxonomic, botanical and genomic characteristics of rice	1
1.2. Rice: Food security, economic impact and the challenges in cultivation	2
1.3. Salt stress and its effect of rice grown land	7
1.3.1. Source of salinity	7
1.3.2. The deleterious effect of salinity on plants and production	
1.3.3. Mechanisms of salinity tolerance in plants	
1.3.4. Na ⁺ /K ⁺ homeostasis transporters	
1.3.5. Varying degrees of crop species to salt tolerance	
1.3.6. Natural variation of genes/QTLs for salinity tolerance in rice	
1.4. Objectives of the study	16
2. Material and methods	
2.1. Rice materials	18
2.2. Methods	18
2.2.1. Vector construction and rice transformation	
2.2.2. Germination evaluation of the parents and BIL population	
2.2.3. Germination parameters	
2.2.4. Evaluation of rice seedling performance	
2.2.5. Physiological traits	
2.2.6.Field experiment and data collection	
2.2.7. DNA isolation and genotype analysis	
2.2.8. Quality and quantity of genomic DNA	
2.2.9. Molecular markers and sequencing	
2.2.10. QTL mapping	
3. Results	
3.1. Differences of varieties under salt stress at the germination stage	25
3.2. Differences in the seedling parameters of the parents under salt stress	28
3.2.1. The sensitivity indices of parental varieties to salt tolerance	29
3.2.2. Responses of ACC9 and ZS97 to salt stress	

3.3. Identification of QTLs for salt tolerance in rice	34
3.3.1. Phenotype variation in BIL population under salt stress	35
3.3.2. Correlation coefficient of assayed traits of BIL population	36
3.3.3. QTLs identification for germination traits	36
3.3.4. QTLs identified for morph-physiological traits at the seedling stage	41
3.3.5. Common QTLs identified under salt stress	45
3.4. The "green revolution" gene sd1 conferring salt tolerance	46
4. Discussion	50
4.1. Sensitivity degree of rice to salt stress	50
4.2. Phenotypic variation in BIL population under salt stress	52
4.3. QTLs identified for germination and seedling traits	52
5. References	56
6. Supplementary Tables and Figures	74
Self-Introduction	100
Acknowledgment	101

Abstract

Rice (*Oryza Sativa* L.) is one of the world's staple food crops. Salinity is one of the most serious factors that affect seed germination and seedling establishment, which may result in a complete crop failure and final rice yield. To increase rice production of saline affected areas that is widely occurring worldwide, identification of quantitative trait loci (QTLs) associated with salt tolerance is an essential step for the improvement in varieties of salt-tolerant rice. The main objective of the present study is to identify QTLs related to salt tolerance at the germination and seedling stages using a rice backcross inbred line (BIL) population that was derived from a backcross of an Africa cultivated rice ACC9 as a donor and an *indica* cultivar Zhenshan 97 (ZS97) as the recurrent parent. The main results are as follows:

(1) Seven rice parental lines of several mapping populations were first evaluated for their salt tolerance at the early growth stage. Cultivar ACC9 and a wild rice accession ACC10 were more tolerance to salt stress than ZS97, which was the most sensitive one at the germination stage. The remaining four varieties (NIP, MH63, G159, and 9311) were classified as moderately tolerant ones. At the seedling stage, ZS97 was found to be the most tolerant variety, ACC10 and ACC9 were classified as the most sensitive.

(2) Using the BIL population and SNP genotypes, a molecular linkage map with 714 bin markers covered the rice genome was constructed. Using IciMapping software with inclusive composite interval method, QTL analysis identified 23 loci for germination parameters related to salt tolerance at the germination stage and 46 loci for morphological and physiological parameters at the seedling stage. Among them, 9 and 33 loci with the ACC9 alleles increased salt tolerance at the germination and seedling stages, respectively. Moreover, several major QTLs explained phenotypic variation \geq 10% for several assessed traits were colocalized in the same or overlapping regions, indicating that the same genes or linked genes have a pleiotropic effect on these multiple traits. For example, three loci (qSH1, qSDW1 and qSHI1) colocalized in bin B01C254; five loci (qDLW2, qNa+2.2, qDLSFR2, qDLWI2 and qDLSFRI2) overlapped in bin B02C61. Some loci were identified in small bins (or regions) in the BIL population and localized within or near previously reported genes or loci associated with salt tolerance in rice.

(3) Six major loci (qGR-7d4.3, qSH1, qSFW1.1, qDLW1, qSDW1 and qSHI1) colocalized in B01C254 within a 190-kb size encompassing two known genes: the green revolution gene sd1 and a transcriptional activator SNAC6, and increased rice tolerance to

high-salt stress. As qSH1 explained the highest phenotypic variation in seedling height under salt stresses, the semi-dwarf gene SD1 may be the most likely candidate for qSH1 conferring salt tolerance. The Crispr-cas9 generated sd1 mutants showed significantly higher salt tolerance than the near isogenic line (NIL-SD1NIP) that carried functional SD1 alleles from NIP. The salt tolerance was assayed by a modified standard evaluation system for some morphological traits at the seedling stage. The data of several loci with candidate genes identified for salt tolerance will be very beneficial for the improvement of variety with salt tolerance at early growth stages via marker-assisted selection in rice breeding programs.

In conclusion, salinity is one of the utmost negative abiotic stresses that affects rice production worldwide. In this study, germination parameters and seedling growth were used to evaluate salt tolerance of the BILs derived from ACC9 and ZS97. Totally, 23 and 46 QTLs were identified for the measured traits associated with salt tolerance at the germination and seedling stages, respectively. At least three loci were identified in small bins (or regions) and localized in or nearby previously reported genes associated with salt tolerance. These data can be exploited in the genomic breeding approaches to improve rice with salt tolerance.

Keywords: Africa cultivated rice; salt tolerance; seedling establishment; quantitative trait loci (QTLs); backcross inbred lines (BIL).

Abbreviations

ANOVA	Analysis of Variance
BIL	Backcross inbred line
DLSFR	Dead leaf to shoot fresh weight ratio
DLW	Dead leaf weight
EC	Electric conductivity
GI	Germination index
GII	Sensitivity index of GI
GR	Germination rate
GR-3d	Germination rate at 3d after imbibition
GR-7d	Germination rate at 7d after imbibition
GRI-3d	Sensitivity index of germination rate at 3d
GRI-7d	Sensitivity index of germination rate at 7d
GT	Mean germination time
GTI	Sensitivity index of mean germination time
K^+	Potassium ion
K ₂ O	Potassium oxide
Kg	Kilogram
Mb	Mega base pairs
M ha	Million hectare
mM	millimolar
Mts	Million tons
Ν	Nitrogen
Na ⁺	Sodium ion
NaCl	Sodium chloride
NaKR	Sodium to potassium ratio
P_2O_5	Phosphorus pentoxide
PVE	Phenotypic variation explained
ROS	Reactive oxygen species
SDW	Shoot dry weight
SES	Modified standard evaluation system
SFW	Shoot fresh weight
SH	Seedling height

SSD	Seedling survival days
SWC	Shoot water content
ZS97	Zhenshan 97