EVALUATION OF NON-CONVENTIONAL ENERGY AND PROTEIN SOURCES IN LACTATING EWES' RATION

By

MOHAMED RASHID SALAMA RASHID

B.Sc. Agric. Sci. (Animal Production), Fac. Agric., Cairo Univ., 2009 M.Sc. Agric. Sci. (Animal Production), Fac. Agric., Cairo Univ., 2015

THESIS

Submitted in Partial Fulfilment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Animal Production)

Department of Animal Production Faculty of Agriculture Cairo University EGYPT

2022

Format Reviewer

Vice Dean of Graduate Studies

Name of Candidate: Mohamed Rashid Salama Rashid Degree: Ph.D.			
Title of Thesis: Evaluation of Non-conventional Energy and Protein Sources in			
	Lactating Ewes' Rat	ion	
Supervisors:	Dr. Mohamed Ahmed	Hanafy Ahmed	
	Dr. Wafaa Mostafa A	li Ghoneem	
	Dr. Mervat Sayed Has	ssan Youssef	
Department: Animal Production Branch: Animal Nutrition		: Animal Nutrition	
		Date: 3	1/01/2022

ABSTRACT

This study was conducted to evaluate using of some non-conventional feed resources such as *Leucaena leucocephala* (leucaena), *Manihot esculent* (cassava) leaves, and rejected banana (RB) in lactating ewes' diet. This study consisted of three parts; the chemical evaluation, *in vitro* and *in vivo* studies.

The chemical composition, HPLC analysis and GC-MS analysis were performed for the tested ingredients. The *in vitro* study was conducted using gas production technique, to evaluate the rate of gas production and fermentation patterns at 24 hrs of incubation. Regarding the *in vivo* studies two separately lactation trials were conducted using lactating Blackbelly ewes (1 week after lambing). In the 1st lactation trial, 24 ewes were divided randomly into four groups to evaluate the total replacement of alfalfa pellets with leucaena leaves pellets with/without RB. In the 2nd lactation trial, another 24 ewes were divided randomly into four groups to evaluate the total replacement of alfalfa pellets with cassava leaves pellets with/without RB.

The chemical analysis showed that leucaena and cassava leaves had higher crude protein (22 and 20.5%), total phenols (40.7 and 22.1 eq- to Gallic acid (g)/DM (kg)), and total tannins (4.43 and 1.79%) than alfalfa. The HPLC results mentioned that leucaena and cassava leaves extract had high content of valuable phenolic components that have antioxidant and anti-inflammatory properties like gallic acid, ellagic acid and naringenin. The in vitro study demonstrated that leucaena leaves had the lowest total accumulative gas production being 90.7 ml/g DM. The RB recorded the lowest ruminal pH (5.24) and ammonia concentration (9.0 mg/100ml) compared to other feed ingredients, while it had the highest gas production (192.9 ml/100ml) and degraded organic matter (905.3 g/kg). The 1st in vivo trial illustrated that there were insignificant differences in total DM intake as well 4% fat corrected milk and milk yield and composition between different diets. The 2nd in vivo trial indicated that there were insignificant differences in forage pellets intake, however RB addition decreased grass hay intake being 1317.5 g DM/day comparing with diets without RB (1441.3 g DM/day), with insignificant difference in 4% fat corrected milk, milk yield and composition. Addition of RB to diets showed a positive effect (insignificant) on ewes' milk yield.

In general, substitution of alfalfa by leucaena or cassava leaves with RB as non-conventional protein and energy sources in ration detected no depressive effect on lactating ewe's performance and lambs growth rate.

Key words: Leucaena leucocephala, Manihot esculent, rejected banana, Medicago sativa L., Dichanthium spp., in vitro, in vivo.

CONTENTS

IN	TRODUCTION
R	EVIEW OF LITERATURE
1.	Feedstuffs for livestock in tropical and sub-tropical
•	countries.
2.	Non-conventional feed resources (NCFRs) in ruminant feeding
3	Leucaena (<i>Leucaena leucocephala</i>) as a feedstuff
	Influence of leucaena inclusion in ruminant diets on:
	a. Feed intake
	b. Nutrients digestibility
	c. Rumen fermentation and enteric methane production
	d. Rumen bacteria and protozoa community
	e. Productive performance
	Cassava (<i>Manihot Esculenta</i>) as a feedstuff
	Influence of cassava inclusion in ruminant diets on:
	a. Feed intake
	b. Nutrients digestibility
	c. Rumen fermentation and enteric methane production
	d. Rumen bacteria and protozoa community
	e. Productive performance
	Rejected green banana as a feedstuff
8.	
	as a source of energy on:
ä	a. Feed intake
1	b. Nutrients digestibility
(c. Rumen fermentation and enteric methane production
(1. Productive performance
Μ	ATERIALS AND METHODS

CONTENTS (continued)

R	ESI	ULTS AND DISCUSSION
1.	Cł	nemical evaluation of the feed ingredients
	a.	Chemical composition of the feed ingredients
	b.	The most abundant chemical components of the experimental feed ingredients
	c.	Phenolic compounds of the experimental feed ingredients
2.		<i>vitro</i> evaluation of the experimental feed ingredients
	an	d diets
	a.	Gas production
		Ruminal pH, ammonia concentration, nutrients
		degradability and protozoa count
		Molar proportions of individual and total short-chain fatty
		acids (SCFAs) concentration for feed ingredients and diets
3.	In	vivo evaluation of the experimental diets
	a.	First lactation trial (alfalfa vs leucaena with or without rejected banana)
	b.	Second lactation trial (alfalfa vs cassava with or without rejected banana)
C	ON	CLUSION
		MARY
		ERENCES
		BIC SUMMARY

LIST OF TABLES

No.	Title	Page
1.	Chemical composition (g/kg DM) of the experimental feed	
	ingredients	44
2.	The most abundant chemical compounds in the ethanolic	
	extract of feed ingredients	46
3.	Phenolic components of the experimental feed ingredients	
	detected by high-performance liquid chromatography	
	(HPLC)	52
4.	Components (% DM) and chemical composition (g/kg DM)	
_	of experimental diets	
5.	In vitro gas production for feed ingredients	
6.	In vitro gas production for alfalfa versus leucaena diets	58
7.	In vitro gas production for alfalfa versus cassava diets	60
8.	In vitro ruminal pH, ammonia (NH ₃ -N) concentrations,	
	degraded organic matter (DOM), degraded neutral detergent	
	fiber (DNDF), and protozoal count for feed ingredients	61
9.	In vitro ruminal pH, ammonia (NH ₃ -N) concentrations,	
	degraded organic matter (DOM), degraded neutral detergent	
	fiber (DNDF), and protozoal count for alfalfa versus	
	leucaena diets	
10.	In vitro ruminal pH, ammonia (NH ₃ -N) concentrations,	
	degraded organic matter (DOM), degraded neutral detergent	
	fiber (DNDF), and protozoal count for alfalfa versus cassava	
	diets	
11.	Molar proportions of individual and total short-chain fatty	
10	acids (SCFAs) concentration for feed ingredients	
12.	Molar proportions of individual and total short-chain fatty	
12	acids (SCFAs) concentration for alfalfa versus leucaena diets	
13.	Molar proportions of individual and total short-chain fatty acids (SCFAs) concentration for alfalfa versus cassava diets	
14	Effect of leucaena inclusion in diets with or without rejected	
14.	banana on dry matter intake (DMI), lambs daily gain (DG)	
	and ewes' body weight (BW) changes	76
	and everes body weight (Dw) changes	10

LIST OF TABLES (continued)

15.	Effect of leucaena inclusion in diets with or without rejected	
	banana on milk yield and composition	79
16.	Effect of cassava inclusion in diets with or without rejected	
	banana on dry matter intake (DMI), lambs daily gain (DG)	
	and ewes' body weight (BW) changes	80
17.	Effect of cassava inclusion in diets with or without rejected	
	banana on milk yield and composition	82

LIST OF FIGURES

No.	Title	Page
1.	Leucaena leucocephala leaves	12
2.	Cassava (Manihot esculenta) plant parts	21

LIST OF ABBREVIATIONS

ADF	:	Acid detergent fiber
ADL	:	Acid detergent lignin
AOAC	:	Association of Official Agriculture Chemists
BCS	:	Body condition score
BW	:	Body weight
C_2/C_3	:	Acetate to propionate ratio
CF	:	Crude fiber
СР	:	Crude protein
DG	:	Daily gain
DM	:	Dry matter
DMI	:	Dry matter intake
DNDF	:	Degraded neutral detergent fiber
DOM	:	Degraded organic matter
EE	:	Ether extract
FCM	:	Fat corrected milk
GC-MS	:	Gas chromatography-mass spectrometry
GP	:	Gas production
Н	:	Head
HPLC	:	High performance liquid chromatography
Hrs.	:	Hours
Kg	:	Kilogram
L	:	Liter
μ	:	Micro
NCFRs	:	Non-conventional feed resources
NDF	:	Neutral detergent fiber
NFE	:	Nitrogen free extract
NH ₃ -N	:	Ammonia nitrogen
OM	:	Organic matter
SEM	:	Standard error of the mean
VFA	:	Volatile fatty acids
VS.	:	Versus