

Tanta University Faculty of Agriculture Plant Protection Department

STUDY EFFECT OF SPIDER MITE ON SOME FIELD CROPS, AND ITS CONTROL AT EL-GHARBIA GOVERNORATE

By

Mohamed Reda Hassan Hassan Ammar

B. Sc. Agric., Science, (Field Crops) Fac., of Agric., Al-Azhar Univ., 2006.

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

(Pesticide Chemistry and Toxicology)

Plant Protection Department Faculty of Agriculture Tanta University

2021

CONTENTS

	Page
INTRODUCTION.	1
REVIEW OF LITERATURE	4
A. Ecological studies	4
I. Occurrence of phytophagous and predators inhabiting crop field	4
II. Population fluctuation of phytophagous mites and predacious mites inhabiting crop fields	6
B. Biological studies	17
C. Chemical study	23
C1. Laboratory study	23
C2. Field study	26
MATERIL AND METHODS	31
A. Ecological studies	31
I. Occurrence of phytophagous mites and predators inhabiting Maize and Soybean at Kafr Alzaiat, Gharbia Governorate.	31
II. Population fluctuation of <i>Tetranychus urticae</i> Koch and predacious mites inhabiting Maize at Gharbia Governorate	
during the two successive years 2015-2016	31
III. Population fluctuation of <i>Tetranychus urticae</i> Koch and predacious mites inhabiting Soybean at Gharbia Governorate during the two successive wars 2015–2016	20
D D D D D D D D D D	32 22
L Diological studies of Tetramahus untigate Koch	22
C. Chomical study	23 24
I. Mass rearing of susceptible two-spotted spider mite strain, <i>T. urticae</i> Koch in the laboratory	34 34
II. Study of the possible acaricidal effect of Romactin, Challenger and Ortus alone and in combination under	51
laboratory condition on <i>T. urticae</i>	34
II.1. Dipping Technique	36
III.1. Effect of the combination between LC_{50} of Romactin,	
Challenger and Ortus on Soybean plant under filed condition.	37
III.2. Effect of the combination between LC_{50} of Romactin,	
Challenger and Ortus on Maize plant under filed condition	37
Statistical analysis	38
RESULTS AND DISSCUSSION	39
A. Ecological studies	39
I. Occurrence of phytophagous mites and predators inhabiting	39

Maize and Soybean at Kafr Alzaiat, Gharbia Governorate.	
I.1. Phytophagous mites	39
I.2. Predators	40
II. Population fluctuation of <i>Tetranychus urticae</i> Koch and	
predacious mites inhabiting Maize at Kafr Alzaiat,	
Gharbia Governorate during the two successive years	
2015-2016.	43
II.1.1. Population fluctuation of phytophagous mites, T.	
urticae Koch on single cross maize hybrids	43
II.1.2. Evaluation of the susceptibility of different single	
cross maize hybrids to T. urticae infestation during	
seasons 2015-2016	49
II.1.3. Effect of weather factors and plant age on the	
population fluctuation of T. urticae on different maize	
single cross hybrids	51
II.2.1.Population fluctuation of phytophagous mites, <i>T.urticae</i>	
Koch on five maize three-cross hybrids	54
II.2.2. Evaluation of the susceptibility of different three-	
cross maize hybrids to Tetranychus urticae infestation	
during seasons 2015-2016.	61
II.2.3. Effect of weather factors and plant age on the	
population fluctuation of <i>T. urticae</i> on different maize	
three cross hybrids	65
II.3. Population fluctuation of the predatory mite	68
II.3.1. Population fluctuation of the predatory mite	
Amblyseius swirskii (AH.), on five maize single cross	
hybrids at the Kafr Alzaiat, Gharbia Governorate	60
during seasons 2015-2016.	68
11.3.2. Population fluctuation of the predatory mite	
Amolyselus swirskii (AH.), on five maize three-cross	
nyorius al Kair Alzaial, Ghardia Governorale during	74
II 4 Effect of producious mites on phytophagous mite	/4
n.4. Effect of predacious finites on phytophagous finite	80
If 4.1. Effect of predecious mites on phytophagous mites on	80
five maize single cross hybrids	80
II 4.2 Effect of predacious mites on phytophagous mites on	80
five maize three_cross hybrids	82
III Population fluctuation of <i>Tetranychus urticae</i> Koch and	02
predacious mites inhabiting Soybean at Gharbia Governorate	
during the two successive years 2015-2016	84
III 1 Population fluctuation of T urtical on southean	74
in it is the second of the second of the second second	, ,

varieties during 2015-2016 growing seasons	
II.1.1. Effect of weather factors and plant age on the	
population fluctuation of T. urticae on different soybean	
cultivars	91
III.2.Population fluctuation of predatory mite, Eusieus	
scutalis (A H.) on soybean varieties during 2015-2016	
growing seasons.	95
III.3. Efficiency of the predatory mite <i>E. scutalis</i> mites on <i>T.</i>	
<i>urticae</i> population	101
B. Biological study	102
B.1. Some biological aspects of <i>Tetranychus urticae</i> Koch on	
some Soybean cultivars at three constant temperatures.	102
B.1.1. Biology of <i>T. urticae</i> Koch on Giza21, Giza35 and	
Giza83 Soybean varieties at 22°C	102
B.1.2. Biology of T. urticae Koch on Giza21, Giza35 and	
Giza83 Soybean varieties at 26°C.	103
B.1.3. Biology of T. urticae Koch on Giza21, Giza35 and	
Giza83 Soybean varieties at 30°C.	111
B.1.4. Factorial analysis of obtained biological aspects of T.	
urticae	115
B.1.4.1. Effect of soybean varieties	115
B.1.4.2. Effect of temperature on the biology of <i>T. urticae</i>	116
C. Chemical study	121
1. Mass rearing of susceptible two-spotted spider mite strain, T.	
<i>urticae</i> Koch in the laboratory	121
I. Laboratory studies	121
I.1. Study of the possible acaricidal effect of Romactin,	
Challenger and Ortus alone and in combination under	
laboratory condition on <i>T. urticae</i> .	121
I.2. Toxicity of tested compounds against adult females of	
two-spotted spider mite T. urticae treated with different	
concentration of Romactin using dipping technique.	122
1.3. Toxicity of tested compounds against adult females of	
two-spotted spider mite T. urticae treated with different	105
concentration of Challenger using dipping technique.	127
1.4. Toxicity of tested compounds against adult females of	
two-spotted spider mite <i>I. urticae</i> treated with different	120
concentration of Ortus using dipping technique.	130
1.5. The mortality rate of <i>I. urticae</i> treated with the	
combination between LC_{50} of Komactin, Unallenger and	
Offus on Soydean plant using the dipping technique after	100
24, 48 and 72n under laboratory condition.	100

II. Field study	136
II.1. The effect of the combination between LC_{50} of Romactin,	
Challenger and Ortus on Soybean plant under filed	
condition.	136
II.2. The effect of the combination between LC_{50} of Romactin,	
Challenger and Ortus on Maize plant under filed	
condition.	140
SUMMARY	143
REFERENCES	149
ARABIC SUMMARY	162

LIST OF TABLES

Table (1) :	Occurrence on phytophagous and predators inhabiting Maize	
Table (2):	Population fluctuation of <i>Tetranychus urticae</i> Koch on five maize single cross hybrids at Kafr Alzaiat. Gharbia	
	Governorate during season 2015	
Table (3):	Population fluctuation of <i>Tetranychus urticae</i> Koch on five maize single cross hybrids at Kafr Alzaiat, Gharbia Governorate during season 2016	
Table (4):	Evaluation of the susceptibility of different maize single hybrids	
	to <i>Tetranychus urticae</i> infestation during seasons 2015-2016.	
Table (5):	Simple correlation coefficients and multiple regression values	
	for the effect of weather factors and plant age on T. urticae	
	populations on five maize single cross hybrids during the	
	growing season 2015.	
Table (6):	Simple correlation coefficients and multiple regression values	
	for the effect of weather factors and plant age on <i>I. urticae</i>	
	growing season 2016	
Table (7)	Population fluctuation of <i>Tetranychus urticae</i> Koch on five	
1 able (7).	maize three crosses hybrids at Kafr Alzaiat, Gharbia	
Table (8).	Population fluctuation of <i>Tetranychus urticae</i> Koch on five	
1 4010 (0).	maize three crosses hybrids at Kafr Alzaiat Gharbia	
	Governorate during season 2016.	
Table (9):	Evaluation of the susceptibility of different maize three hybrids	
	to <i>Tetranychus urticae</i> infestation during seasons 2015-2016.	
Table (8):	Population fluctuation of the predatory mite Amblyseius swirskii	
	(AH.), on five maize single cross hybrids at the Kafr	
	Alzaiat, Gharbia Governorate during season 2015	
Table (10):	Simple correlation coefficients and multiple regression values	
	for the effect of weather factors and plant age on T. urticae	
	populations on five maize three crosses hybrids_during the	
m 11 /14\	growing season 2015	
Table (11):	Simple correlation coefficients and multiple regression values	
	nor the effect of weather factors and plant age on <i>I. urticae</i>	
	growing season 2016	
	growing season 2010	

Table (12):	Population fluctuation of the predatory mite <i>Amblyseius swirskii</i> (AH.), on five maize single cross hybrids at the Kafr	
Table (13):	Alzaiat, Gharbia Governorate during season 2016 Population fluctuation of the predatory mite <i>Amblyseius swirskii</i>	70
~ /	(AH.), on five maize three-cross hybrids at the Kafr Alzaiat, Gharbia Governorate during season 2015	72
Table (14):	Population fluctuation of the predatory mite <i>Amblyseius swirskii</i> (A -H) on five maize three-cross hybrids at the Kafr Alzaiat	,2
	Gharbia Governorate during season 2016.	76
Table (15):	Correlation coefficient between population fluctuation of predacious mite and its relation to <i>Tetranychus urticae</i> , on	-
Table (16):	five maize single-cross hybrids during season 2015-2016. Correlation coefficient between population fluctuation of predacious mite and its relation to <i>Tetranychus urticae</i> , on	78
Table (17):	Population fluctuation of <i>Tetranychus urticae</i> Koch on three Soybean cultivars at the Kafr Alzaiat, Gharbia Governorate	81
	during season 2015	83
Table (18):	Population fluctuation of <i>Tetranychus urticae</i> Koch on three Soybean cultivars at the Kafr Alzaiat, Gharbia Governorate during season 2016	85
Table (19):	Evaluation of the susceptibility of different soybean cultivars to <i>Tetranychus urticae</i> infestation during seasons 2015-2016.	85 87
Table (20):	Population fluctuation of the predatory mite, <i>Euseius scutalis</i> on three Soybean cultivars at the Kafr Alzaiat, Gharbia Governorate during season 2015	89
Table (21):	Simple correlation coefficients and multiple regression values for the effect of weather factors and plant age on <i>T. urticae</i> populations during the growing season 2015 on soybean	07
	varieties.	92
Table (22):	Simple correlation coefficients and multiple regression values for the effect of weather factors and plant age on <i>T. urticae</i> populations during the growing season 2016 on soybean varieties.	92
Table (23):	Population fluctuation of the predatory mite, <i>Euseius scutalis</i> on three Soybean cultivars at the Kafr Alzaiat, Gharbia	07
Table (24):	Population fluctuation of the predatory mite, <i>Euseius scutalis</i> on three Soybean cultivars at the Kafr Alzaiat, Gharbia	9/
Table (25):	Governorate during season 2016 Correlation coefficient between population fluctuation of predatory mite <i>E. scutalis</i> and its relation to <i>Tetranychus</i>	99 101

	urticae, on three Soybean cultivars during season 2015-2016.
Table (26):	Mean developmental times in days $(\pm SD)$ of <i>T.urticae</i> reared
	on three Soybean cultivars at 22°C
Table (27):	Mean generation, longevity and fecundity of <i>T.urticae</i> females reared on three Soybean cultivars at 22°C
Table (28):	Mean developmental times in days (\pm SD) of <i>T.urticae</i> reared on three Soybean cultivars at 26°C
Table (29):	Mean generation, longevity and fecundity of <i>T.urticae</i> females reared on three Soybean cultivars at 26°C
Table (30):	Mean developmental times in days (\pm SD) of <i>T.urticae</i> reared on three Soybean cultivars at 30°C
Table (31):	Mean generation, longevity and fecundity of <i>T.urticae</i> females reared on three Soybean cultivars at 30°C
Table (32):	Effect of Soybean varieties on biological aspects of <i>T.urticae</i> at different constant temperatures
Table (33):	Effect of different temperatures on biological aspects of <i>T.urticae</i> on Soybean varieties
Table (34):	The mortality rate of <i>T. urticae</i> treated with different concentration of Romactin using the dipping technique after 24, 48 and 72h
Table (35):	Toxicity of different concentration of Romactin on adult of <i>T. urticae</i> on Soybean using the dipping technique after 24, 48 and 72h
Table (36):	The mortality rate of <i>T. urticae</i> treated with different concentration of Challenger using the dipping technique after 24, 48 and 72h.
Table (37):	Toxicity of different concentration of Challenger on adult of <i>T. urticae</i> on Soybean using dipping technique after 24, 48 and 72h
Table (38):	The mortality rate of <i>T. urticae</i> treated with different concentration of Ortus using the dipping technique after 24, 48 and 72h.
Table (39):	Toxicity of different concentration of Ortus on adult of <i>T</i> . <i>urticae</i> on Soybean using the dipping technique after 24, 48 and 72h
Table (40):	The mortality rate of <i>T. urticae</i> treated with the combination between LC_{50} of Romactin, Challenger and Ortus on Soybean plant using the dipping technique after 24, 48 and 72h under laboratory condition.
Table (41):	Comparative toxicity of some Acaricides against <i>T. urticae</i>
Table (42):	Number of motile stages of <i>T. urticae</i> treated with the combination between LC_{50} of Romactin, Challenger and

	Ortus on Soybean plant under filed condition	
Table (43):	Reduction percentage of <i>T. urticae</i> treated with the combination	
	between LC ₅₀ of Romactin, Challenger and rtus on Soybean	
	plant under filed condition	138
Table (44):	Number of motile stages of T. urticae treated with the	
	combination between LC50 of Romactin, Challenger and	
	Ortus on Maize plant under filed condition	141
Table (45):	Reduction percentage of <i>T. urticae</i> treated with the combination	
	between LC ₅₀ of Romactin, Challenger and Ortus on Maize	
	plant under filed condition	141

LIST OF FIGURS

		Page
Fig. (1):	Population fluctuation of <i>Tetranychus urticae</i> Koch on five maize one-way cross hybrids at Kafr Alzaiat,	
	Gharbia Governorate during season 2015	46
Fig. (2):	Population fluctuation of <i>Tetranychus urticae</i> Koch on five maize one-way cross hybrids at Kafr Alzaiat, Charbia Governorate during season 2016	18
Fig. (3):	General mean of different maize single hybrids to <i>Tetranychus urticae</i> infestation during seasons 2015-	+0
	2016	50
Fig. (4):	Population fluctuation of <i>Tetranychus urticae</i> Koch on five maize three-way crosses hybrids at Kafr Alzaiat,	
F ' (f)	Gharbia Governorate during season 2015	58
F1g. (5):	Fopulation fluctuation of <i>Tetranychus urticae</i> Koch on	
	Gharbia Governorate during season 2016	60
Fig (6).	General mean of different maize three hybrids to	00
1 15. (0).	Tetranychus urticae infestation during seasons 2015-	
	2016	62
Fig. (7):	Population fluctuation of the predatory mite <i>Amblyseius</i> <i>swirskii</i> (AH.), on five maize one-way cross hybrids at Kafr Alzaiat, Gharbia Governorate during season 2015	71
Fig. (8):	Population fluctuation of the predatory mite Amblyseius	/1
0 (-)	swirskii (AH.), on five maize one-way cross hybrids	
	at Kafr Alzaiat, Gharbia Governorate during season	
	2016	73
Fig. (9):	Population fluctuation of the predatory mite <i>Amblyseius</i> <i>swirskii</i> (AH.), on five maize three-way crosses hybrids at Kafr Alzaiat. Gharbia Governorate during	
	season 2015	77
Fig. (10)	Population fluctuation of the predatory mite <i>Amblyseius</i> <i>swirskii</i> (AH.), on five maize three-way crosses	, ,
	hybrids at Kafr Alzaiat, Gharbia Governorate during	
	season 2016	79
Fig. (11)	Population fluctuation of Tetranychus urticae Koch on	86

	three Soybean cultivars at Kafr Alzaiat, Gharbia	
Γ' (10)	Governorate during season 2015	
F1g. (12)	Population fluctuation of <i>letranychus urticae</i> Koch on	
	three Soybean cultivars at Kair Alzalat, Gharbia	00
$E_{-}^{(12)}$	Governorate during season 2016	88
Fig. (13)	General mean of different soybean cultivars to	
	<i>Tetranychus urticae</i> infestation during seasons 2015-	00
E_{in} (14)	2010	90
Fig. (14)	Population fluctuation of the predatory mile, <i>Euseius</i>	
	Charbia Covernorate during sasson 2015	00
$\operatorname{Fig}(15)$	Population fluctuation of the productory mite Fuscius	90
гі <u>д</u> . (13)	southing three Southern cultivers at Kefr Alzeit	
	Gharbia Governorate during season 2016	100
Fig. (16)	Mean developmental times in days (+ SD) of Turticae	100
11g. (10)	reared on three Soybean cultivars at 22° C	105
Fig (17)	Mean generation ovinosition and fecundity of <i>Turticae</i>	105
115. (17)	females reared on three Soybean cultivars at 22°C	106
Fig. (18)	Mean developmental times in days (+ SD) of <i>Turticae</i>	100
1 19. (10)	reared on three Sovbean cultivars at 26°C	109
Fig. (19)	Mean generation, oviposition and fecundity of <i>T.urticae</i>	
0 ()	females reared on three Soybean cultivars at 26°C	110
Fig. (20)	Mean developmental times in days (± SD) of <i>T.urticae</i>	
	reared on three Soybean cultivars at 30°C	113
Fig. (21)	Mean generation, oviposition and fecundity of T.urticae	
	females reared on three Soybean cultivars at 30°C.	114
Fig. (22)	Effect of Soybean varieties on biological aspects of	
	<i>T.urticae</i> at different constant temperatures	119
Fig. (23)	Effect of different temperatures on biological aspects of	
	<i>T.urticae</i> on Soybean verities	120
Fig. (24)	Toxicity of different concentration of Romactin on adult	
	of <i>T. urticae</i> on Soybean using the dipping technique	10.4
D : (0.5)	after 24, 48 and 72h	126
Fig. (25)	Toxicity of different concentration of Challenger on adult	
	of <i>I. urticae</i> on Soybean using dipping technique after	120
E_{in} (26)	24, 48 and /2n	129
Fig. (20)	Toxicity of different concentration of Oflus on adult of T.	
	24 48 and 72h	127
Fig (27)	24, 40 all u / 211	132
1 Ig. (27)	combination between LC _{co} of Romactin Challenger	
	and Ortus on Soybean plant using the dipping	135
	and Ortus on Soyocan plant using the dipping	155

	technique after 24, 48 and 72h under laboratory	
	condition.	
Fig. (28)	Reduction percentage of T. urticae treated with the	
	combination between LC ₅₀ of Romactin, Challenger	
	and Ortus on Soybean plant under filed condition.	139
Fig. (29)	Reduction percentage of T. urticae treated with the	
- · ·	combination between LC ₅₀ of Romactin, Challenger	
	and Ortus on Maize plant under filed condition	142

SUMMARY

Maize (*Zea mays* L.) and Soybean (*Glycine max* (L.) Merr.), are the major oil seed cropping grown and consumed in the world. They are the most important grain crop in Egypt and produced throughout the country under diverse environments, as it widely distributed all over the world. Corn and soybean infested withmanyinsect andmite peststhroughvarious stages ofgrowth, and the most importantplantpests are phytophagous mites, especially the two-spotted spider mite*Tetranychus urticae*due to its high potential to cause damage.

Consequently, the objective of the present study aimed to throw some lights on the following points:-

A.Ecological studies

- I. Occurrence of phytophagous mites and predators inhabiting Maize and Soybean at Kafr Alzaiat, Gharbia Governorate
- II.Population fluctuation of *Tetranychus urticae* Koch and predacious mites inhabiting Maize and soybean crops at Gharbia Governorate during the two successive years 2015-2016.
- III. Biological studies of *Tetranychus urticae* Koch on three varieties of Soybean crops at three constant temperatures at laboratory.
- IV. Study of the possible acaricidal effect of Romactin, Challenger and Ortus alone and in combination under laboratory and field condition on *T. urticae*.

Results revealed the following: A.Ecological studies

I.1Occurrence of phytophagous mites and predators inhabiting Maize and Soybean at Kafr Alzaiat, Gharbia Governorate. Phytophagous mites were represented by 7 species belonging to four families and two orders. However, arthropod predators were represented by 8 species belonging to 4 families and 4 orders

1- Phytophagous mites, which frequently occurred on corn and soybean, were observed to cause severe harms to leaf. Mite feeding produces variable symptoms such as rusting, surface browning. Severe infestation can be defoliation of leaves and deteriorate the crops. Seven phytophagous mites belonging to four families and two orders. *Tetranychus urticae* Koch and *Eutetranychus orientalis* (Klein) (**Tetranychidae**); *Steneotarsonemus sayedi*

Zaher& Kandeel and *Polyphagotarsonemus latus* (Banks) (**Tarsonemidae**); *Tydeus californicus* (Banks) (**Tydeidae**) and *Tyrophagous putrescentiae* (Schrank) and *Rhizoglyphus robini* Claparede (Acaridae).

2-

Predators:

arthropod predators were represented by 8 species belonging to 4 families and 4 orders. *Pronematus ubiquitous* (McGregor) (**Tydeidae**); *Chyletogenus ornatus* (Can. &Fanz.) (**Cheyletidae**); *Agistemus exertus* Gonzalez (**Stigmaeidae**); *Amblyseius swirskii* (A.-H.) and *Euseius scutalis* (A.-H.) (**Phytoseiidae**); the true spider, *Thanatus albini* (Audouin) (**Philodromidae**); *Thomisus spinifer* Cambridge (**Theridiidae**) and the predatory insect, *Stethorus punctillum* Weise (**Coccinellidae**).

II.1. Population fluctuation of phytophagous mites, *Tetranychus urticae* Koch and the predatory mite, *A. swirskii*on single- cross maize hybrids:

- 1- The population fluctuation of the two spotted spider mite *T. urticae* Koch throughout the year 2015-2016 at the Kafr Alzaiat Gharbia Governorate. The study was conducted on five maize single-cross hybrids (i.e. Pioneer30K8, SC2030, SC2031, SC2055 and SC3084), and their relation to weather factors.
- 2- The *T. urticae* motile stages have two peaks in mid July and late August during two seasons 2015-2016 on most maize single hybrids during the two successive years.
- 3- Statistical analysis of population fluctuation of *T. urticae* revealed that, there were non-significant positive correlated between population density of *T. urticae* with temperature and relative humidity during the two successive seasons.
- 4- The susceptibility of different single cross maize hybrids to *T. urticae* infestation. Indicated that, the tested hybrids into four different groups as follows: the highly infested group was represented by SC3084 followed by SC2031 and SC2030 without any significant difference between them. The moderately infested included pioneer30k8 hybrid, while SC2055 hybrid was represented by the highly resistant.
- 5- The predatory mite *A. swirskii* have one peak of seasonal abundance, which was recorded in late August on all single hybrids (Pioneer30K8, SC2030, SC2031, SC2055 and SC3084) during the two successive years. The predatory

mite, *A. swirskii* is important for controlling the population density of *T. urticae* during the two successive seasons on five single maize hybrids.On five maize single hybrids it was found significant positive correlation between the predatory mite population and both minimum and maximum temperatures. While, insignificant positive correlation between the predatory mite and mean relative humidity in the first season 2015.

II.2. The population fluctuation of the two spotted spider mite *T. urticae* Koch and the predatory mite, *A. swirskii*during the two seasons 2015-2016 on three-cross maize hybrids.

- The study was conducted on five maize three-cross hybrids (i.e. TWC130, TW310, TWC323, TWC324, and TWC352), and their relation to weather factors.
- 2- The *T. urticae* motile stages have two peaks in mid July and late August during two seasons 2015-2016 on most maize three hybrids during the two successive seasons 2015-2016.
- **3-** Statistical analysis for general mean of five maize three-cross hybrids population fluctuation of *T. urticae* revealed that, there were non-significant positive correlated between population density of *T. urticae* with maximum temperature and relative humidity during the first season, while the correlation between the minimum temperature and population was significant positive in the first season.
- The susceptibility of different maize three-cross hybrids to *Tetranychus urticae* infestation during seasons 2015-2016. The tested hybrids into three different groups; the highly infested group (a) was represented by TWC352, TWC324 and TWC310 followed by TWC323 group (b), followed by TWC130 by the highly resistant group.
- 5- The predatory mite *A. swirskii* have one peak of seasonal abundance, which was recorded in 3rd of August on all three hybrids (TWC130, TWC310, TWC323, TWC324 and TWC352) during the two successive years. The predatory mite, *A. swirskii* is important for controlling the population density of *T. urticae* during the two successive seasons on five three maize hybrids. Significant positive correlation between the predatory mite population

and both of at maximum, minimum temperature, while insignificant between population and mean relative humidity during seasons 2015.

- III. The population fluctuation of *T. urticae* Koch and predatory mite *Euseius scutalis*on three Soybean cultivars at Gharbia Governorate was studied during two successive 2015-2016 seasons.
 - 1- The results indicated that significantly differed in their *T. urticae* infestations according to the mean numbers of motile stages through 2015 and 2016 seasons on three cultivars Giza21, Giza35 and Giza83.
 - 2- The population of *T. urticae* has two peaks in the first season 2015, the first peak in the late in June on the three soybean varieties. Whereas, the second peak was recorded during the third week of July on Giza21 and Giza83 varieties. In the second season 2016, *T. urticae* it has one peak in 7th of July on Giza21 and Giza35, but it's reach the maximum number in mid July for Giza83.
 - 3- Soybean Giza35 variety was a high significant response to *T. urticae* infestation recording of 552.56 and 440.5 motile stages/ leaflets for two successive seasons, respectively, which in turn showed significant differences with the other varieties, Giza21 and Giza83. Whereas, Giza21 variety was the most tolerant variety recorded 130.38 and 174.88 ind./ leaflet for two successive seasons.
 - **4-** Insignificant positive effect of temperature maximum and minimum temperatures on the population of *T. urticae* infested the three Soybean varieties during 2015 and 2016.
 - 5- Significant positive correlation between the *T. urticae* population and the predatory mites, *Euseius scutalis*in all soybean varieties, the predatory mite was the main important predator for suppressing population density of *T. urticae* population during the two successive seasons
- B. Some biological aspects of *Tetranychus urticae* Koch on some Soybean cultivars at three constant temperatures
- Some biological aspects of *Tetranychus urticae* Koch on Soybean cultivars (i.e. Giza21, Giza35 and Giza83) at three constant temperature of 22, 26 and 30°C, Relative humidity 65% and 16:8 L: D photoperiods were studied.

- 2- The results indicated that, *T. urticae* successfully developed on all experimental soybean cultivars at the three constant temperatures. The life cycle of *T. urticae* was long at 22°C followed by 26°C than 30°C. The longevity of female *T. urticae* was 18.18, 18.88 and 19.18 days on at 22°C, followed by 15.83, 16.78 and 17.80 days at 26°C, while the shortest period was 13.65, 13.85 and 15.30 days at 30°Con Giza21, Giza84 and Giza35, respectively.
- 3- Significant differences occurred between all stages at the three levels of temperatures. The highest fecundity and daily rate at 30°C was 95.65 eggs/female and 8.72 eggs/♀/day, while the lowest was at 22°C as 71.58 eggs/female and 5.33 eggs/♀/day. Significant differences occurred between the three varieties diets as fecundity was the highest on Giza35 and the lowest on Giza21.
- 4- The shortest developmental time and generation period and the high fecundity were recorded was recorded on Giza35, whereas the longest life cycle and generation period and the lowest fecundity was recorded on Giza21, these results indicated that Soybean Giza35 more susceptible to infestation by spider mite, while Giza21 more tolerance, whereas Giza83 was moderately infestation.

C. Chemical study

- 1. Toxicity of tested compounds against *T. urticae*treated with different concentration of Romactin using the leaf disks were diping at six concentrations (10.8, 7.2, 3.6, 1.8, 0.9, 0.9 and 0.45 ppm). The mortality rate of *T. urticae*after 24, 48 and 72h gave 100% for 8.1 and 5.4 ppm, followed by 96 and 90% for 2.7 and 1.3 ppm. Romactin was the most toxic to adult mites after 72h followed by 48h.
- 2. For testing the influence of Challenger on mortality rates of *T. urticae* Koch, six concentrations (216; 144; 72; 36; 18 and 9ppm). The percentage of *T. urticae* females after 72h from treatment, it can be conducted that recommended dose 144 ppm was more toxic followed by 216 and 72 ppm concentrations. The LC₅₀ value was 24.38, 25.15 and 21.57% after 24, 48 and 72h, respectively.
- **3.** Different concentrations (37.5, 25, 12.5, 6.25, 3.125 and 1.562 ppm) of Ortus against the tetranychid mite, *T. urticae*after three days of

treatment.TheMortality % was higher at 37.5 and 25 ppm followed by 12.5 ppm. The LC_{50} values for the tested Ortus were 7.07, 6.373 and 5.10% after 24, 48 and 72h, respectively.

- 4. No differences between the LC_{50} of Romactin, Challenger and Ortus on Soybean plant using the dipping technique after 24, 48 and 72h under laboratory condition. The mean reduction percentage was 82.6, 88.7 and 85.3% for Romactin, Challenger and Ortus, respectively.
- 5. The effect of the combination between LC₅₀ of Romactin, Challenger and Ortus on Soybean plant under filed condition. The rate of reduction was significantly with the lapse of time. Romactin+ Challenger was the most toxic Acaricide as they caused (94.73%) mean reduction, followed by Romactin+ Ortus (90.04%) while Ortus gave low effect compared with other Acaricide caused (83.7%).
- 6. The effect of the combination between LC₅₀ of Romactin, Challenger and Ortus on Maize plant under filed condition. Theresults showed that Romactin+ Challenger and Romactin+ Ortus gave highest reductions as 97.6 and 95.9%, respectively. Romactin and Challenger resulted in 93.4% and 91.2% reduction after two weeks of treatment, with no significant difference occurred between them. While, the least reduction was recorded for Ortus as 90.2% after two weeks of application.