EVALUATION OF ON-FARM IRRIGATION DEVELOPMENT PROJECTS BY USING SIMULATION MODEL

By

REHAB MAGDY YOUSSEF MOHAMED

B.Sc. Agric. Sc. (Agricultural Engineering), Fac. Agric., Ain Shams University, 2008

A Thesis Submitted in Partial Fulfillment Of The Requirement for the Degree of

MASTER OF SCIENCE in Agricultural Sciences (On-Farm Irrigation and Drainage Engineering)

Department of Agricultural Engineering Faculty of Agriculture Ain Shams University

ABSTRACT

Rehab Magdy Youssef Mohamed: Evaluation of On-Farm Irrigation Development Projects by Using Simulation Model. Unpublished M.Sc. Thesis, Department of Agricultural Engineering Faculty of Agriculture, Ain Shams University, 2022.

The research problem:

- water shortage.
- Low efficiency of surface irrigation.
- Lack of water productivity.

The experimental fieldwork was conducted at the On-farm Irrigation Development Project in Asuit Governorate, Upper Egypt.

The objective of this work was to study the performance of the improved surface irrigation system and compare it with the conventional surface irrigation system. The performance indicators were conveyance efficiency, application efficiency, field water use efficiency, and crop yield. and this research was to evaluate the modified surface irrigation systems' design under old land conditions of Egyptian agriculture based on the simulation model.

Design based on: Determine and calculate the actual water need based on the data of the crop pattern and cultivated areas, and inventory the needs of the partners in control

The development of the field irrigation system depends on the use of the main pipeline (low-pressure pipeline) instead of the current earthen mesqas and maraw's or those built above the ground, in addition to a branch pipeline either perpendicular or parallel to the main pipeline There are main valves on the main pipeline, which in turn either feeds the branch pipeline or pours into the mesqas inside the field, and from each branch line comes out a set of exits (Hydrants) Which covers a specific area. On top of the mainline, there is a pump station to pump water directly into the mainline Data analysis revealed that:

There is a different difference in hydraulic design velocity, because the basic design with higher diameters is supposed to be, and accordingly, the speeds are very reduced, and the pressure loss is very reduced, but the cost is high.

There are technical and financial differences: The modified design of the diameters was modified based on the calculated behaviors, both in scenarios 1 and 2, according to different operating methods and the number of daily working hours. Accordingly, an economic study was conducted compared to the basic design and the modified design. It was found that the economic study is different by 50% for scenario 1 and 30% for scenario 2 less than the main design.

Keywords: Surface irrigation, Conveyance efficiency, Water use efficiency, Application efficiency, Simulation model, Irrigation Design and Pipe test.

CONTENTS

		Page
	LIST OF TABLES	III
	LIST OF FIGURES	
1	INTRODUCTION	
2	REVIEW OF LITERATURE	3
2.1	On-farm Irrigation definition and types in Egypt	3
2.2	On-farm Irrigation system evaluation and Delivery	
	Systems	4
2.3	Surface Irrigation Definition and types	
2.3.1	Surface irrigation types	6
2.3.2	Advantages and Disadvantages of Surface Irrigation	
	and Efficiency	7
2.4	Evaluation of Surface Irrigation System	9
2.4.1	Irrigation efficiencies and their types	
2.4.2	Factors Affecting Irrigation Uniformity and	
	Efficiency	11
2.5	Irrigation Water Management	11
2.5.1	Irrigation Management Projects in Egypt	
2.5.2	Improvement of Egyptian surface irrigation network in	
	the oldlands (mesqa and marwa)	15
2.6	Surface Irrigation Design	
2.7	Model Development	
2.7.1	Simulation model therapy	
2.7.1.1	Definition of the simulation	
2.7.2	Simulation model verification and validation	
2.7.3	Advantages/Disadvantages of using simulation	
2.7.4	Simulation model applications in irrigation	
2.7.5	Programing using in Design	
3	MATERIAL AND METHODS	
3.1	Experimental Site	28

		Page
3.2	Materials	29
3.2.1	Irrigation Systems	29
3.2.2	Improved surface irrigation system	
3.2.2.1	Description of improved surface irrigation	30
3.2.2.2	Components of improved surface irrigation network	30
3.2.2.3	Pumping unit and its components in improved	
	surface irrigation	30
3.2.2.4	Mesqa type	32
3.2.2.5	Buried pipe (UPVC) description	32
3.2.2.6	Lining Mesqa (U- Section):	34
3.2.2.7	The buried pipes system calibration and test	
	procedure	35
3.2.2.8	Main lines and branch lines	35
3.2.3	Traditional surface irrigation	36
3.2.4	Measuring devices	37
3.3	Methods	38
3.3.1	crop pattern and its water requirement's	38
3.3.2	design concept of modified surface irrigation	
	systems	38
3.3.3	Water requirements	39
3.3.4	Field Study	39
3.3.4.1	Initial planning	39
3.3.4.2	Concepts of evaluating the modified surface	
	irrigation hydraulic design	39
3.3.5	Design Outputs	41
3.3.6	Using Simulation Model technique	41
3.3.7	Field experimental work	42
3.3.7.1	Crop fields study	42
3.3.8	Determine the actual technical performance of the	
	developed surface irrigation systems	43
3.3.9	The irrigation water amount	43

		Page	
3.3.10	Advance, recession and opportunity time		
3.3.11	Water conveyance efficiency, (WCE)		
3.3.12	Water Application efficiency, (WAE)		
3.3.13	Water storage efficiency, (WSE)		
3.3.14	Water distribution efficiency, (WDE)		
3.3.15	Water Overall Efficiency, (WOE)	47	
3.3.16	Field water use efficiency, (FWUE)	47	
3.3.16.1	Hydraulic guides to compare designs	48	
3.3.16.2	Hydraulic Calculations	48	
3.3.16.3	Using Simulation Model technique	49	
3.3.16.4	scenarios	51	
4	RESULTS AND DISCUSSION	63	
4.1	Hydraulic designs evaluation under different		
	scenarios	63	
4.2	Irrigation water velocity under different developed		
	scenarios	64	
4.3	Irrigation water losses under different developed		
	scenarios	64	
4.4	Hydraulic evaluation of irrigation systems	65	
4.5	Evaluation of the buried pipes system performance		
4.6	Amount of applied water	67	
4.7	Water application efficiency (WAE) performance	68	
4.8	Yield of crops	70	
4.9	Field water use efficiency	70	
4.10	Price list Analysis.	72	
5	SUMMARY AND CONCLUSION	74	
6	REFERENCES	77	
7	APPENDICES	84	

LIST OF TABLES

Table		Page
No.		
Table 3.1	Specifications of the pumping units used in the	
	improved surface irrigation system	30
Table 3.2	The pumping unit specifications for each mesqas	32
Table 3.3 The buried pipe components and its quantities are		
	field 43 fed	33
Table 3.4	Crops that used in the study.	43
Table 4.1	The value of both velocity and discharge through	
	different types of mesqas.	66
Table 4.2	The actual experimentally measured of buried pipes	
	system.	66
Table 4.3	Effect of developed surface irrigation on	
	productivity of crop.	70
Table 4.4	Effect of list of prices as a result of changing the	
	design.	73

`LIST OF FIGURES

Fig. No.		Page
Fig. 2.1	A multi-step approach for conducting a successful	
	simulation study	20
Fig. 3.1	Design Discharge in the irrigation network of El-	
	Hammam Area. (MALR - 2012)	28
Fig. 3.2	Pumping unit and the socket on branch canal.	31
Fig. 3.3	Layout for buried pipelines Mesqa (lateral canal)	34
Fig. 3.4	Layout lining Mesqa (lateral canal)	35
Fig. 3.5	branch line and its components in improved surface	
	irrigation.	36
Fig. 3.6	Multi-pumps and earthen mesqa as used in traditional	
	surface irrigation.	37
Fig. 3.7	Experiment layout.	48
Fig. 3.8	Original design by Autocad program	50
Fig. 3.9	Effect of traditional and pipes irrigation systems on	
	total water applied under different lateral lengths.	53
Fig. 3.10	Evaluate the design by modifying a dropper based on	
	the assumption to run the complete disposal of the	
	entire network	54
Fig. 3.11	Effect of traditional and pipes irrigation systems on	
	water saving under different lateral lengths and	
	hydraulic calculation by Water Cad Program	55
Fig. 3.12		
	water applied under different lateral lengths and sizes	
	by exl S.1	56
Fig. 3.13	Effect of Reesign and pipes irrigation systems on total	
	water applied under different lateral lengths and sizes	
	by water cad Program	57
Fig. 3.14	Effect of Reesign and pipes irrigation systems on total	
	water applied under different lateral lengths and sizes	62

Fig. No.		Page
	before Redesign by exl S.2	
Fig. 4.1	Effect of velocity in all design and scenario.	64
Fig. 4.2	Effect of head loss (m) in all design and scenario.	65
Fig. 4.3	Effect of Total head loss (m) in all design and	
	scenario.	65
Fig. 4.4	mesqa types on Applied water for irrigation number	
	for winter crops under different mesqas types.	68
Fig. 4.5	Effect of mesqa type on applied water for summer	
	crops	68
Fig. 4.6	Application efficiency during winter and summer	
	seasons	69
Fig. 4.7	Field water use efficiency affected by type crop for	
	different of season	71
Fig. 5.1	opening screen For Watercad Program	86
Fig. 5.2	Create new project	86
Fig. 5.3	The main commands of the program	87
Fig. 5.4	how to draw pipes	89
Fig. 5.5	how to make reservoir	89
Fig. 5.6	Defining the pump in 3 different ways	91
Fig. 5.7	Flexible Tables	92
Fig. 5.8	Fill in the reporting tables for each item	93
Fig. 5.9	The hydraulic analysis process started-Run process	97
Fig. 5.10	Run analysis	98
Fig. 5.11	Review of the raw results (1st Output data) and review	
	of the design	99
Fig. 5.12	Flexible Tables Method	99
Fig. 5.13	Detailed Report	100
Fig. 5.14	Table management	101
Fig. 5.15	Pump and Reservoir Report	102

Fig. No.		Page
Fig. 5.16	Tools – Color Coding	107
Fig. 5.17	Final Reports	108