

Zagazig University Faculty of Vet. Medicine Clinical Pathology Department

Clinicopathological studies on the effect of probiotic in quails

By

Asmaa Nabil Selem Mohamed Kaser

(B. V. Sc., Zagazig University, 2009) (M. V. Sc., Zagazig University, 2015)

Under the supervision of

Prof. Dr. Nasr A.M. Nasr El Deen

Prof. of Clinical Pathology Dean of Faculty of Vet. Medicine Zagazig University

Prof. Dr.

Shimaa A. A. Ismail

Prof. of Clinical Pathology Faculty of Vet. Medicine Zagazig University

Prof. Dr. Sahar S. Abd El Hamied

Chief Researcher of Clinical Pathology Animal Health Research Institute Zagazig

A THESIS

Submitted to Zagazig University
For the Degree of Ph. D. of Veterinary
Medical Sciences
(Clinical Pathology)
Clinical Pathology Department

LIST OF CONTENTS

Subjects	Pages
INTRODUCTION	1
REVIEW OF LITERATURE	5
MATERIALS AND METHODS	44
RESULTS	74
DISCUSSION	131
SUMMARY And CONCLUSION	159
REFERENCES	165
VITA	207
ARABIC SUMMARY	-

LIST OF TABLES

No.	Title	Page
1	The experimental design.	48
2	Mortality rate of quails in different groups (1-8) during the experimental periods.	74
3	Daily oocysts output in experimentally infested quails (mean values \pm S.E) with sporulated oocysts of <i>Eimeria</i> spp.	76
4	Feed consumption gm/quail in groups (1-8) at different experimental periods.	81
5	Body weight gm/ quail (mean values ±S.E) in groups (1-8) at different experimental periods.	82
6	Body gain gm/ quail (mean values ±S.E) in groups (1-8) at different experimental periods.	83
7	Feed conversion ratio (mean values \pm S.E) in groups (1-8) at different experimental periods.	84
8	Erythrogram (mean values \pm S.E) of quails in different groups at the end of the 3^{rd} week (N=5).	89
9	Erythrogram (mean values \pm S.E) of quails in different groups at the end of the 4 th week (N=5).	90
10	Leukogram (mean values \pm S.E) of quails in different groups at the end of the 3^{rd} week (N=5).	91

11	Leukogram (mean values $\pm S.E$) of quails in different groups at the end of the 4 th week	
	(N=5).	92
12	Liver function tests (mean values ±S.E) of	
	quails in different groups at the end of the 3 rd	
	week (N=5).	100
13	Liver function tests (mean values ±S.E) of	
	quails in different groups at the end of the 4 th	
	week (N=5).	101
14	Lipogram (mean values ±S.E) of chickens in	
	different groups at the end of the 3 rd week	
	(N=5).	107
15	Lipogram (mean values ±S.E) of chickens in	
	different groups at the end of the 4 th week	
	(N=5).	108
16	Some plasma oxidative stress markers (mean	
	values \pm S.E) of quails in different groups at the	
	end of the 3^{rd} week (N=5).	113
17	Some plasma oxidative stress markers (mean	
	values ±S.E) of quails in different groups at the	
	end of the 4 th week (N=5).	114
18	Some immunological parameters (mean values	
	±S.E) of quails in different groups at different	
	experimental periods (N=5).	118

LIST OF FIGURES

No.	Title	Page
1	Caecum (arrowhead) and cecal tonsils (thin arrow) and intestine (thick arrow) of Gp. (1) at the 4 th week of experiment showing apparently normal tissues, size and color.	75
2	Enlarged ballooned caecum and cecal tonsil (arrow) with areas of petechial hemorrhages on the intestinal serosa of Gp. (5) at the 4 th week of experiment.	75
3	Daily oocysts output in experimentally infected quails with sporulated oocysts of <i>Eimeria spp.</i> from the 5 th to the 14 th days post-infection.	77
4	Feed consumption of quails in all groups at different experimental periods.	85
5	Body weight of quails in all groups at different experimental periods.	85
6	Body gain of quails in all groups at different experimental periods.	86
7	Feed conversion rate of quails in all groups at different experimental periods.	86
8	RBCs count of quails in all groups at different experimental periods	93
9	Hb concentration of quails in all groups at different experimental periods.	93
10	PCV of quails in all groups at different experimental periods.	94

11	MCV of quails in all groups at different	
	experimental periods.	94
12	MCH of quails in all groups at different	
	experimental periods.	95
13	MCHC of quails in all groups at different	
	experimental periods.	95
14	Total leukocytic count of quails in all groups at	
	different experimental periods.	96
15	Heterophilic count of quails in all groups at	
	different experimental periods.	96
16	Lymphocytic count of quails in all groups at	
	different experimental periods	97
17	Monocytic count of quails in all groups at different	
	experimental periods.	97
18	Eosinophilic count of quails in all groups at	
	different experimental periods.	98
19	Basophilic of quails in all groups at different	
	experimental periods.	98
20	Serum total proteins of quails in all groups at	
	different experimental periods.	102
21	Serum albumin of quails in all groups at different	
	experimental periods.	102
22	Serum globulin of quails in all groups at different	
	experimental periods.	103
23	A/G ratio of quails in all groups at different	
	experimental periods.	103
		1

24	Serum ALT of quails in all groups at different	
	experimental periods.	104
25	Serum AST of quails in all groups at different	
	experimental periods.	104
26	Serum ALP of quails in all groups in different	
	experimental periods	105
27	Serum cholesterol of quails in all groups in	
	different experimental periods	109
28	Serum triglycerides of quails in all groups at	
	different experimental periods.	109
29	Serum HDL of quails in all groups at different	
	experimental periods.	110
30	Serum LDL of quails in all groups at different	
	experimental periods.	110
31	Serum VLDL quails in all groups at different	
	experimental periods.	111
32	Plasma CAT of quails in all groups at different	
	experimental period.	115
33	Plasma SOD of quails in all groups at different	
	experimental period.	115
34	Plasma MDA of quails in all groups at different	
	experimental period.	116
35	IFN-gamma of quails in all groups at different	
	experimental period.	119
36	IL-2 of quails in all groups at different	
	experimental period.	119
		1

37	Photomicrograph of small intestine of gp. (2) at	
	the 4 th week of experiment showing apparently	
	normal mucosal and sub mucosal tissues (H&E x	102
	400).	123
38	Photomicrograph of caecum of gp. (3) at the 3 rd	
	week of experiment showing normal mucosal and	
	submucosal tissues (H&E x 200).	123
39	Photomicrograph of small intestine of gp. (3) at	
	the 3 rd week of experiment showing normal	
	mucosal and submucosal tissues (H&E x 400).	124
40	Photomicrograph of caecum of gp. (4) at the 3 rd	
	week of experiment showing normal mucosal and	
	submucosal tissues (H&E x 200).	124
41	Photomicrograph of cecal tonsil of gp. (4) at the	
	4 th week of experiment showing normal mucosal	
	and submucosal tissues (H&E x 400).	125
42	Photomicrograph of small intestine of gp. (5) at	
	the 3 rd week of experiment showing inflammatory	
	reaction (H&E x 400).	125
43	Photomicrograph of small intestine of gp.(5) at	
	4 th week of experiment showing denuded villi with	
	proliferative stages of <i>Eimeria spp</i> .(arrows) (H&E	
	x 800).	126
44	High power of the previous figure to show	
	proliferative stages of Eimeria spp. (H&E x	
	1200).	126

45	Photomicrograph of small intestine of gp. (5) at the	
	4 th week of experiment showing submucosal	
	extravasated erythrocytes (arrow) (H&E x 1200).	127
46	Photomicrograph of small intestine of gp. (5) at the	
	4 th week of experiment showing mild lymphoid	
	depletion (arrowhead) (H&E x 400).	127
47	Photomicrograph of caecum of gp. (5) at the 4 th	
	week of experiment showing lymphoid depletion	
	from submucosal lymphatic tissue (arrow) (H&E x	
	400).	128
48	Photomicrograph of small intestine of gp. (6) at the	
	4 th week of experiment showing mild mononuclear	
	cell infiltration (H&E x 400).	128
49	Photomicrograph of small intestine of gp. (7) at the	
	4 th week of experiment showing mucinous	
	degeneration (H&E x 200).	129
50	Photomicrograph of small intestine of Gp. (7) at	
	the 4 th week of experiment showing mucinous	
	degeneration (H&E x 200).	129
51	Photomicrograph of caecal tonsil of gp. (7) at the 4 th	
	week of experiment showing lymphoid depletion	130
	from submucosal lymphatic tissue (H&E x 400).	
52	Photomicrograph of small intestine of gp. (8) at	
	the 3 rd week of experiment showing mononuclear	
	cell infiltration H&E x 400).	130

LIST OF ABBREVIATIONS

A/G ratio : Albumin/Globulin ratio **ALP** : Alkaline phosphatase

ALT : Alanine amino transferase AST : Aspartate amino transferase

BG : Body gainb.wt : Body weightCAT : Catalase

EDTA : Ethylene diamine tetraacetic acid **FAO** : Food and Agriculture Organzation

FCR : Feed conversion rate

FL : Femtoliter
Fig : Figure
Gp : Group

Hb : Hemoglobin

HDL : High density lipoproteinH&E : Hematoxylin and Eosin

IL-1β : Interleukin-1beta

IL-2: Interleukin-2 **IL-3** : Interleukin-3 II.-4 : Interleukin-4 IL-5 : Interleukin-5 **IL-6** : Interleukin-6 **IL-8** : Interleukin-8 **IL-13** : Interleukin-13 **IL-18** : Interleukin-18

INF- γ : Interferon gamma
LDL : Low density lipoprotein

LSD : Least significant difference

MDA : Malondialdehyde

MCH : Mean corpuscular hemoglobin

MCHC : Mean corpuscular hemoglobin concentration

MCV : Mean corpuscular volume

NK : Natural killer

PBS : Phsophate buffer saline

PCV : Packed cell volume

P.M : Post-mortem PG : Picogram

RBCs : Red blood cells **S.E** : Standard error

SOD : Superoxide dismutase

Tab : Table

TC : Total cholesterol TG : Total triglycerides

Th1 : T. helper 1 **Th2** : T. helper 2

TLC : Total leukocytic count

TP : Total protein

VLDL : Very low density lipoprotein

WBCs : White blood cells

SUMMARY

The present work was performed to study the effect of toltrazuril, probiotic and thyme essential oil on *growth* performance, immunity, antioxidant enzyme activity and blood parameters on Eimeria spp. infected and non-infected quails.

One hundred and sixty eight one day old quails were used in this study. The birds were divided into eight equal groups. Group (1) was kept as normal control. Group (2) administrated probiotic (1 gm/L drinking water) from one day till 28 days old. Group (3) supplemented with thyme essential oil 450 mg/kg mixed with the diet from one day till 28 days old. Group (4) administrated toltrazuril at 16 days old at a dose of 25 ppm (1 ml/L drinking water) for 2 consecutive days. Group (5) experimentally inoculated intracrop with 4.1 x 10⁴ sporulated oocysts of Eimeria spp. at 14 days old. Group (6) administrated probiotic (1 gm/L drinking water) from one day till 28 days old and experimentally inoculated intracrop with (4.1×10^4) sporulated oocyst of Eimeria spp. at 14 days old. Group (7) supplemented with thyme essential oil 450 mg/kg mixed with the diet from one day till 28 days and experimentally inoculated intracrop with (4.1 x 10⁴) sporulated oocyst of *Eimeria spp.* at 14 days old. Group (8) experimentally inoculated intracrop with (4.1×10^4) sporulated oocyst of *Eimeria spp.* at 14 days old and treated with toltrazuril at 16 days old at a dose of 25 ppm (1 ml/L drinking water) for 2 consecutive days.

Clinical signs were observed. The ration was weighed daily to determine the feed consumption/week. The weekly feed consumption was subdivided on the weekly increase in the body weight to give feed conversion rate. Five quails, from each group, were sacrificed and collected blood samples at the end of the 3rd and 4th weeks. Specimens were collected, at the time of sacrifice, from the intestine, caecum and cecal tonsils.

Groups (5) showed ruffled feathers, depression, decreased appetite, emaciated breast muscle, knife edged keel bone and bloody diarrhea. Three quails from the 5th group were died at the end of the 3rd week. No mortalities were recorded in other groups. Majority of quails supplemented either with probiotic or thyme essential oil and infected with *Eimeria spp*. (Gps. 6&7) showed mild diarrhea with slight depression. However, group (8) which infected with *Eimeria spp*. and treated with toltrazuril showed no clinical signs.

A significant increase in body gain and decrease in FCR was reported in probiotic and thyme essential oil supplemented birds (Gps. 2& 3). However, groups (5) revealed reduction in the body weight, performance and feed consumption together with increased feed conversion rate at the end of the 3rd and 4th weeks. The use of probiotic, thyme essential oil or toltrazuril in *Eimeria spp*. infected quails (Gps. 6-8) produced an improvement in the

body weight and gain at the end of the 3rd and 4th week compared with (Gp. 5).

The erythrogram of groups (5-8) showed significant decreases in the RBCs count, Hb concentration and PCV with development of normocytic normochromic anemia at the end of the 3rd week and macrocytic hypochromic anemia at the end of the 4th week.

Concerning to the result of leukogram, Group (2) showed a significant leukocytosis and lymphocytosis at the end of the 3rd and 4th weeks. A significant leukocytosis, heterophilia, lymphocytosis and eosinophilia were recorded in groups (5-8) at the end of the 3rd week. Also leukocytosis, heterophilia and monocytosis were recorded in the same groups at the end of the 4th week.

Regarding to the results of liver function tests, group (5) showed significant decreases in the serum total proteins, albumin and globulin levels, while the serum ALT, AST and ALP activities were increased along the experimental periods compared with the normal control. Supplementation with probiotic or thyme essential oil and treatment with toltrazuril (Gps. 6-8) resulted in significant improvement in the serum levels of total proteins, albumin and serum activities of ALT, AST and ALP compared with *Eimeria spp*. infected group along the experimental periods.

Regarding the lipogram of group (2-3) the results showed significant decreases in the serum cholesterol, triglycerides, low-density and very low-density lipoproteins, with insignificant changes in the serum high-density lipoproteins along the experimental periods compared with the normal control. Groups (5-7) showed significant decreases in the serum cholesterol, triglycerides, high-density lipoprotein, low-density and very low-density lipoproteins along the experimental periods compared with the normal control. Group (8) showed significant increase in the serum cholesterol, triglycerides, high-density lipoprotein and very low-density lipoproteins levels with a significant decrease in low-density lipoproteins compared with group (5) at the end of the 3rd and 4th weeks.

The current work showed a significant increase in the plasma CAT activity with a significant decrease in MDA level and insignificant changes in SOD activity in (Gp. 3) compared with the normal control along the experimental periods. *Eimeria spp.* infected quails (Gp. 5) revealed significant increase in the plasma CAT activity and MDA level with a significant decrease in the serum SOD activity along the experimental periods compared with the normal control. Groups (6-8) showed significant decrease in the plasma CAT activity and MDA level with a significant increase in the plasma SOD activity compared with group (5).

Concerning the cellular immunity of group (5), the result proved significant increases in the cecal IFN-gamma and IL-2 all over the experimental periods compared with the normal control. However, groups (6&7) showed significant decreases in the cecal IFN-gamma and IL-2 at the end of the 3rd and 4th week compared with *Eimeria spp*. infected group (Gp. 5). Toltrazuril treated group (Gp. 8) showed significant decreases in the cecal IFN-gamma and IL-2 compared with *Eimeria spp*. infected group, which returned to normal at the end of the 4th week.

It could be concluded that

- 1- *Eimeria spp.* infection caused badly alteration in the erythrogram, leukogram, liver function, lipid profile, antioxidant balance and cellular immunity.
- 2- Probiotic or thyme essential oil can be used as a potential alternative anticoccidials in quails to avoid side effects of chemical and anticoccidial drugs such as anticoccidial residues and resistance.
- 3- Moreover, the addition of probiotic (1 gm/L drinking water) or thyme essential oil (450 mg/kg mixed with the diet) enhances the growth performance, cellular immunity and antioxidant enzyme system.
- 4- The administration of therapeutic dose of toltrazuril is proved to be curative against *Eimeria spp*. infection in quails.

We recommended:

• It is preferable to use probiotic or thyme essential oil as food additive in quails ration because it enhances growth performance, cellular immunity, antioxidant enzyme system and had anticoccidial properties.