MARKERS RELATED TO TOLERANCE OR SENSITIVITY TO LATE WILT DISEASE IN MAIZE

By

SAYED HASSAN AHMED AGAG

B.Sc. Agric. Sc. (Plant Pathology), Faculty of Agriculture, Ain Shams University, 2003 M.SC. Agric. Sc. (Plant Pathology), Faculty of Agriculture, Ain Shams University, 2015

> A Thesis Submitted in Partial Fulfillment Of The Requirements for The Degree

DOCTOR OF PHILOSOPHY in Agricultural Sciences (Plant Pathology)

Department of Plant Pathology Faculty of Agriculture Ain Shams University

2022

ABSTRACT

Sayed Hassan Ahmed Agag: Markers Related to Tolerance or Sensitivity to Late Wilt Disease in Maize. Ph.D. Thesis, Plant Pathology Department, Faculty of Agriculture Ain Shams University, 2022.

Late wilt in maize caused by *Magnaporthiopsis maydis* is one of the most important diseases in Egypt. To find molecular markers related to tolerance or sensitivity to late wilt, sixteen isolates of *M. maydis* were isolated from diseased plants from different governorates and identified using a specific primer. On PDA medium all isolates have similar growth form, growth elevation and growth margin but different in mycelial color, the faster isolate was S3 while the lowest was A2. The pathogenicity test was carried out in greenhouse using single cross hybrid Pioneer 3062. Isolates F13 and F14 were the most virulent while the lowest was Mi5. By using six RAPD primers the 16 isolates classified into five clusters. Twenty five single cross hybrids of maize were screened against late wilt disease in two seasons 2018 and 2019 in greenhouse and field experiments. The field experiment was only able to combine so the higher infection was 67.31% for hybrid P3084 while the lowest was zero for hybrid P3433. By using disease rating scale, the 25 hybrids can be classified into 12 tolerant hybrids, seven moderately tolerant hybrids and six sensitive hybrids. Three vegetative traits and six yield traits were measured during field experiment in two seasons 2018 and 2019. There was a negative significant relationship and medium correlation obtained between plant height, ear height, stalk diameter, ear diameter, 100 kernels weight and grain yield per hybrid and late wilt infection while there was no correlation obtained between ear length, number of row per ear and number of kernels per row and late wilt infection. Two different molecular markers, nine ISSR primers, five SCoT primers as dominant markers and 129 SSR primers as co-dominant markers were used to study the molecular diversity between five tolerant maize hybrids and five sensitive one. The final cluster analysis based on ISSR

,SCoT and SSR markers classified the tolerant and sensitive hybrids into four clusters .

DNA fingerprinting for the five tolerant and five sensitive hybrids was carried out by using 80 SSR primers whereas 8 SSR primers can be used as DNA finger printing for tolerant hybrid P3737, one SSR primer can be used as DNA finger printing for tolerant hybrid P3433, one SSR primer can be used as DNA finger printing for sensitive hybrid ARC 168 and one SSR primer can be used as DNA finger printing for sensitive hybrid P31G. A 600 bp locus was found in all sensitive hybrids only when using ISSR primer (AC)9A which specialized for sensitivity to late wilt disease and it can be used as molecular marker for sensitivity to late wilt .Two inbred lines ,tolerant inbred G5 and sensitive inbred G9 were evaluated against late wilt in field experiment in disease nursery in agricultural research center for two seasons 2018,2019. F1 was selfed to produce F2 which phenotyping against late wilt by using disease severity scale .Among 207 tolerant individuals of F2, 34 individuals were selfed to produce F3 families which phenotyping against late wilt. By using bulked segregant analysis, the most 11 tolerant individuals from 34 individuals of F3 and the most 11sensitive individuals from F2 were bulked of their DNA to produce two bulks, tolerant bulk and sensitive bulk. Among 129 SSR primers there were 29 primers polymorphic only between the two inbred lines which used to electrophoresis of the parental lines and the two bulks. SSR primer umc 1277 located in chromosome 9 bin 7 was only the SSR primer which correlate between tolerant inbred line and tolerant bulk which can be used as marker assisted selection to late wilt. The F2 segregation showing the typical phenotypic ratio 3 tolerant: 1 sensitive and also these ratio suggest that one single gene is controlling the tolerance to late wilt in maize and showing complete dominance.

Keywords: Late wilt Disease, *Magnaporthiopsis maydis*, Molecular markers, Bulked segregant analysis and Marker assisted selection.

CONTENTS

	Page
LIST OF TABLES	VI
LIST OF FIGURES	VIII
LIST OF ABBREVIATIONS	XI
INTRODUCTION	1
REVIEW OF LITERATURE	3
1-History of late wilt in maize caused by Magnaporthiopsis	
maydis in Egypt	3
2-Geograppical distribution of late wilt disease	4
3-Morphological characteristics of <i>M.maydis</i> isolates	5
4-Molecular identification of the causal organism by specific	
primer	5
5-Molecular diversity among different isolates using RAPD	
marker	6
6-Reclassification of Cephalosporium maydis fungus	6
7-Maize hybrids screening	7
8-Inheritance of resistance to late wilt in maize	7
9-QTL mapping of resistance to late wilt in maize	8
10-Bulked segregant analysis(BSA) or two tail selective	
genotyping	9
11-Molecular marker	10
11-1-Simple sequence repeats (SSR)marker	11
11-2-Inter simple sequence repeats(ISSR)marker	11
11-3-Start codon targeted (SCoT)polymorphism marker	11
12- Molecular diversity among maize hybrids using different	
molecular marker	12
12-1-Simple sequence repeats (SSR)marker	12
12-2-Inter simple sequence repeats(ISSR)marker	14
12-3-Start codon targeted (SCoT)polymorphism marker	14
13-Finger printing for maize inbred lines and hybrids	14
14-Marker assisted selection (MAS)	15

MATERIALS AND METHODS	16
1-Isolation of the late wilt pathogen	16
2-Molecular identification of <i>M.maydis</i> isolates	
2-1-DNA isolation	16
2-2- PCR reaction and conditions of specific primer	17
2-3- Gel electrophoresis	17
2-4-Gel image	17
5- Cultural characterization and mycelial growth of <i>M.maydis</i>	
isolates	17
6-Pathogenicity test of M.maydis isolates	18
7-Diversity of <i>M.maydis</i> isolates using RAPD primers	18
7-1-PCR reaction and conditions	19
7-2-Gel electrophoresis	19
8-Maize hybrids	19
9- Screening of maize hybrids against late wilt disease	
9-1-Preparation of <i>M.maydis</i> inoculum	20
9-2-Greenhouse experiment	20
9-3-Field experiment	20
10-Disease assessment	21
11-Assortment of maize hybrids according to disease rating scale	21
12-Agronomical traits	21
12-1-Vegetative traits	21
12-2-Yield component traits	21
13-Molecular studies	22
13-1-Maize hybrids	22
13-2-Leaf samples from maize hybrids	22
13-3-DNA extraction	22
14-Molecular markers	22
14-1-Dominant markers	23
14-1-1-Inter simple sequence repeats(ISSR)marker	23
14-1-1-PCR reaction and conditions	23
14-1-1-2-Gel electrophoresis	23

14-1-2-Start codon targeted (SCoT)polymorphism marker	24
14-1-2-1-PCR reaction and conditions	24
14-1-2-2- Gel electrophoresis	24
14-2-Co-dominant marker	25
14-2-1-Simple sequence repeats (SSR) marker	25
14-2-1-1-PCR reaction and conditions	26
14-2-1-2-Gel electrophoresis	26
15-Marker assisted selection (MAS) for late wilt in maize	26
15-1-Evaluation of inbred lines and F1 against late wilt	26
15-2-Evaluation of F2 against late wilt	27
15-3-Evaluation of F2:3 families against late wilt	27
15-4-Phenotyping	27
15-5-Genotyping	28
15-5-1-DNA extraction from two inbred lines	28
15-5-2-Bulked segregant analysis (BSA)or two tail selective	_
genotyping	28
15-5-3-Parental screening for polymorphism using SSR marker	29
15-5-3-1-PCR reaction and conditions	29
15-5-3-2-Gel electrophoresis	29
16-Statistical analysis	29
RESULTS	32
1-Molecular identification of <i>Magnaporthiopsis maydis</i> isolates	32
2-Cultural characterization of <i>M.maydis</i> on PDA medium	32
3-Mycelial growth of <i>M.maydis</i> isolates	33
4-Pathogenicity test of <i>M.maydis</i> isolates	33
5-Molecular characterization of <i>M.maydis</i> isolates	34
6-Screening of maize hybrids against late wilt disease	37
6-1-Greenhouse experiment	37
6-2-Field experiment	38
7-Assortment of maize hybrids according to disease rating scale	39
8-Vegetative traits	45
8-1-Plant height trait (PH)	45

8-2-Ear height trait (EH)	47	
8-3-Stalk diameter trait (SD)		
9-Yield traits		
9-1-Ear length trait(EL)		
9-2-Ear diameter trait (ED)	53	
9-3-Number of rows per ear trait	54	
9-4-Number of kernels per row trait	56	
9-5-100 kernels weight trait	58	
9-6-Grain yield per hybrid trait	60	
10-Correlation between agronomical trait and disease incidence	62	
10-1-Vegetative traits	62	
10-2-Yield traits	62	
11- Principle component analysis (PCA) for disease		
incidence, vegetative traits and yield traits	63	
12-Molecular studies	64	
12-1- Molecular diversity among ten hybrids of maize		
12-1-1-Dominant markers		
12-1-1-Inter simple sequence repeats (ISSR)marker		
12-1-1-2-Start codon targeted (SCoT)polymorphism marker		
12-1-2-Co-dominant marker		
12-1-2-1-Simple sequence repeats (SSR) marker		
13-Principle coordinate analysis(PCoA)for ISSR,SCoT and SSR		
markers	74	
14-DNAfinger printing for tolerant or sensitive hybrids to late		
wilt in maize	76	
15-Molecular markers related to tolerance or sensitivity to late		
wilt disease	98	
16-Marker assisted selection (MAS) for late wilt disease	98	
16-1-Evaluation of inbred lines		
16-2-Phenotyping data		
16-3-Genotyping data		
16-4-Bulked segregant analysis (BSA)or two tail selective	100	

genotyping data	
17-Inheritance of resistance to late wilt in the F2 segregation	100
DISCUSSION	102
SUMMARY	114
REFERENCES	122
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
Ι	Isolates of <i>M. maydis</i> and location of collection.	16
II	List of RAPD primers and their sequence.	18
III	List of ISSR primers and their sequence.	23
IV	List of SCot primers and their sequence.	24
V	List of SSR Primers used the present study.	25
1	Variation in color of isolates of M. maydis isolates on	
	PDA medium.	33
2	Total number of bands(TNB), polymorphic bands (PB),	
	percentage of polymorphic bands (PPB) and	
	polymorphic information content (PIC) for the six	
	RAPD primers.	35
3	The similarity matrix for 16 isolates of M.maydis based	
	on RAPD data	36
4	Means of disease incidence for 25 maize hybrids sown	
	ingreen house(GH) experiment duringseasons 2018and	
	2019.	38
5	Means of disease incidence for 25 maize hybrids sown	
	in field experiment during seasons 2018and 2019.	39
6	The possibility of combining greenhouse and field	
	experiments data based on Bartlett test.	40
7	Disease incidence for 25 maize hybrids of combining	
	2018 and 2019 data and the disease reaction.	41
8	Means of plant height trait for infected and healthy	
	plants of growing seasons 2018 and 2019.	46
9	Means of ear height trait for infected and healthy plants	
	of growing seasons 2018and 2019.	48
10	Means of stalk diameter trait for infected and healthy	
	plants of growing seasons 2018and 2019.	50
11	Means of ear length trait for infected and healthy plants	
	of growing seasons 2018and 2019.	52

12	Means of ear diameter trait for infected and healthy	
	plants of growing seasons 2018and 2019.	54
13	Means of number of rows per ear trait for infected and	
	healthy plants of growing seasons 2018and 2019.	55
14	Means of number of kernels per row trait for infected	
	and healthy plants of growing seasons 2018and 2019.	57
15	Means of 100kernels weight trait(gm) for infected and	
	healthy plants of growing seasons 2018 and 2019.	59
16	Means of the grain yield per hybrid trait(gm) for	
	infected and healthy plants of growing seasons 2018	
	and 2019.	61
17	Pearson correlation and significance for agronomical	
	traits of 25 maize hybrids.	62
18	Total number of bands, polymorphic bands, percentage	
	of polymorphic bands and polymorphic information	
	contents for ISSR primers.	65
19	The similarity matrix for 10 maize hybrids based on	
	ISSR data.	66
20	Total number of bands, polymorphic bands, percentage	
	of polymorphic bands and polymorphic information	
	contents for SCoT primers.	68
21	The similarity matrix for 10 maize hybrids based on	
	SCoT data .	68
22	Number of alleles and polymorphic information	
	contents (PIC) for 80 SSR primers.	71
23	The similarity matrix for 10 maize hybrids based on	
	SSR data .	72
24	The similarity matrix for 10 maize hybrids based on	
	ISSR, SCoT and SSR data.	73
25	Means of disease incidence for inbred lines G5 and G9	
	in growing seasons 2018-2019.	99

VIII

LIST OF FIGURES

No.	Title	Page
Ι	Disease severity scale for late wilt showing different	
	levels of severity.	28
1	Gel electrophoresis for 16 isolates of Magnaporthiopsis	
	maydis, first comb isolates from 1 to 8 while second	
	comb isolates from 9 to 16. 100 bp of DNA ladder was	
	loaded in the first lane of each comb.	32
2	Mycelial growth (cm) of <i>M. maydis</i> isolates after 6 days	
	of growing on PDA plates	33
3	Means of disease incidence of <i>M. maydis</i> isolates	34
4	RAPD gel electrophoresis of 16 isolates of M. maydis	
	using primer No.(5),100bp DNA ladder was loaded in	
	the first and end lane.	35
5	Dendrogram of cluster analysis for 16 isolates of M.	
	maydis based on RAPD data using Dice coefficient.	37
6	25 maize Hybrids response to late wilt from combining	
	data 2018 and 2019.	42
7	The response of Hytech hybrids to late wilt from	
	combining data 2018 and 2019.	42
8	The response of Pioneer hybrids to late wilt from	
	combining data 2018 and 2019.	43
9	The response of ARC hybrids to late wilt from	
	combining data 2018 and 2019.	43
10	The response of Fineseeds hybrids to late wilt from	
	combining data 2018 and 2019.	44
11	The response of Imported hybrids to late wilt from	
	combining data 2018 and 2019.	44
12	Scree plot for the ten component, disease incidence,	
	three vegetative traits and six yield traits.	63

13	Principle component analysis (PCA) for 25 maize	
	hybrids based on disease incidence, vegetative traits and	
	yield traits data.	64
14	Gel electrophoresis for ten hybrids of maize using ISSR	
	primer No. 6 the first and end lane were loaded with	
	100bp of DNA ladder.	65
15	Dendrogram of cluster analysis for 10 maize hybrids	
	based on ISSR data using Dice coefficient .	66
16	Gel electrophoresis for ten hybrids of maize using SCot	
	primer No.5 the first and end lane were loaded with	
	100bp of DNA ladder.	67
17	Dendrogram of cluster analysis for 10 maize hybrids	
	based on SCoT data using Dice coefficient .	69
18	Gel electrophoresis of SSR primer Phi065 exhibits the	
	polymorphic bands among 10 maize hybrids, the first	
	and end lane were loaded with 100 bp DNA ladder.	70
19	Gel electrophoresis of SSR primer P-umc1257 left gel	
	and Phi 233376 right gel exhibits the monomorphic	
	bands among 10 maize hybrids. The first and end lane	
	were loaded with 100bp DNA ladder (the right gel first	
	lane only).	70
20	Dendrogram of cluster analysis for 10 maize hybrids	
	based on SSR data using Dice coefficient.	72
21	Dendrogram of cluster analysis for 10 maize hybrids	
	based on ISSR,SCoT and SSR data using Dice	
	coefficient.	73
22	Principle coordinate analysis (PCoA) for ten maize	
	hybrids based on similarity matrix of nine ISSR markers.	74
23	Principle coordinate analysis (PCoA) for ten maize	
	hybrids based on similarity matrix of five SCoT markers.	75
24	Principle coordinate analysis (PCoA) for ten maize	
	hybrids based on similarity matrix of 80 SSR markers.	75

25	Principle coordinate analysis (PCoA) for ten maize	
	hybrids based on similarity matrix of ISSR, SCoT and	
	SSR markers.	76
26	Individual dendrograms of cluster analysis for 10 maize	
	hybridsbased on 80 SSR primers data using Dice	
	coefficient.	96
27	Dendrogram of cluster analysis showing separated	
	hybrid P3737 in one cluster based on SSR primer Phi	
	374118 using Dice coefficient.	97
28	Dendrogram of cluster analysis showing separated	
	hybrid ARC 168 in one cluster based on SSR primer P-	
	umc 1245 using Dice coefficient.	97
29	Gel electrophoresis for ten hybrids of maize using ISSR	
	primer No.3, the first and end lane were loaded with 100	
	bp DNA ladder.	98
30	Gel electrophoresis for two parental lines G5,G9,	
	tolerant bulk and sensitive bulk using SSR primerUmc	
	1277. The first lane was loaded with 100 bp DNA ladder.	100

LIST OF ABBREVIATIONS

AFLP	Amplified Fragment Length Polymorphism
BSA	Bulked Segregant Analysis
ITS	Internal Transcribed Spacer
ISSR	Inter-Simple Sequence Repeats
MAS	Marker Assisted Selection
NCLB	Northern Corn Leaf Blight
PDA	Potato Dextrose Agar
QTL	Quantitative Traits Loci
RAPD	Randomly Amplified Polymorphic DNA
RFLP	Restriction Fragment Length Polymorphism
SCA	Saprophytic Competitive Ability
SCAR	Sequence Characterized Amplification Regions
SCoT	Start Codon Targeted Polymorphism
SSR	Simple Sequence Repeats