

Zagazig University Faculty of Science Chemistry Department

Studies on Heterocyclization and Biological Activity of Mercaptopyrimidine Derivatives

BY Weam Mohamed Mahmoud M.Sc. (Chemistry – Organic Chemistry)

A Thesis

Submitted in partial fulfillment of the requirements for The Degree of Doctor of Philosophy in Chemistry (Organic Chemistry)

> Department of Chemistry Faculty of Science Zagazig University 2022

2-amino-6-thioxouracil (1) undergoes cyclo-condensation with pyruvic acid derivative 2 and ninhydrin (6) to furnish thiopyranopyrimidine 5 and thienopyrimidine 8, respectively. Alkylation of aminopyrimidine 1 with benzyl chloride consumed two moles to form S- and N-alkylated product 9. Subjecting compound 9 to aminolysis with aniline derivatives resulted in 4-aminopyrimidine 10a,b through Dimorth rearrangement. Furthermore, the addition of cyclic enamine 10a,b to ninhydrin and benzoyl isothiocyanate produced pyrimidine derivatives 12a,b and 14. Finally, the addition of enamenic carbon of 10a,b to polarized systems 2 or 18 afforded the pyrido [2,3-d] pyrimidines 17 and 21a-d in moderate to good yield. Condensation of aminopyrimidine derivative 9 with acetophenone leads to olefinic pyrimidine 23, various addition-cyclization reactions of which give the corresponding bicyclic pyrimidines 25, 27, and 29. Cycloaddition reaction of pyrimidine 9 to benzoyl isothiocyanate gives thiourea derivative 30. Intramolecular cyclization of compound 9 with NaOH or Br₂ produces pyrimidine derivatives 31 or 33, respectively. Heteroannulation of pyrimidine 9 with ninhydrin or α -carbonyl carboxylic acid 35 gives the tetracyclic pyrimidine 34 and diazepine derivative 38, respectively. Fluorescence properties of pyrimidine derivatives have been tested. The three synthesized pyrimidines derivatives compounds 9, 27, 30, are able to have a toxic effect on male albino rats as they produced both hepatotoxicity, renal damage besides their hazardous effects on the Hb and inhibition of ChE.

Contents

Subject	Page
Introduction	1
1. Synthetic methods of pyrimidine derivatives	2
1.1. One pot synthesis	2
1.2. From α,β-unsaturated carbonyl compounds	8
1.3. Heteroannulation reaction	9
1.4. <i>Via</i> intermolecular cyclization of aroyl isothiocyanate	16
1.5. Via isothiocyanate	18
1.6. Via ring transformation	19
2. Reactivity and reactions of pyrimidine	23
2.1. Amination reactions	23
2.2. Halogenation reactions	24
2.3. Oxidation reactions	25
2.4. Ring opening reactions	25
2.5. Nucleophilic substitution reactions	25
3. Synthesis of fused or condensed pyrimidines	28
3.1. Synthesis of pyridopyrimidines	28
3.2. Pyrimidotriazines	32
3.3. Pyrimidopyridazines	34
3.4. Thienopyrimidines	34
3.5 Triazolopyrimidines	35
3.6. Pyrimidothiazines	40
3.7. Pyranopyrimidines	41
3.8. Pyrazolo[3,4-d]pyrimidines	43
3.9. Azolylpyrimidines	45

4. Biological activity of pyrimidine derivatives	47
4.1. pyrimidines as anti-microbial agents	47
4.2. Pyrimidines as an anti-bacterial agents	49
4.3. Pyrimidines as anti-inflammatory agents	51
5. Effect of some insecticides on some biochemical	53
parameters in insects and mammals	
Experimental	60
Results and discussion	87
Spectral analysis	120
Summary	159
References	164
Arabic Summary	

List of Tables

No	Table Title	Page
Table (1):	Absorption and fluorescence wavelengths of compounds 25, 27, 29, 31, 33, 34, and 38 ($c = 1 \times 10-5$ M)	100
Table (2):	Effect of oral compound 9 , compound 17 and compound 30 for 28 days on Body weight, Liver weight, Liver index, Kidney weight and Kidney index in male albino rats	103
Table (3):	Effect of oral compound 9, compound 17 and compound 30 for 28 days on serum (A) alanine aminotransferase (ALT), (B) aspartate aminotransferase (AST), (C) alkaline phosphatase (ALP), (D) ChE activity, urea and creatinine concentrations in male albino rats.	105
Table (4):	Effect of oral compound 9 , compound 17 and compound 30 for 28 days on serum (A) total proteins, (B)) hemoglobin (Hb), (C) malondialdehyde (MDA), and (D) total antioxidant capacity (TAC) in male albino rats.	112

List of Figures

Title	Page
Figure 1: Reactivity profile of 2-aminouracil 1	87
Figure 2: Absorption spectra of pyrimidines (1) 25, (2) 27 , (3) 29, (4) 31 , (5) 33 , (6) 34 , (7) 38 at <i>c</i> = 10 μM in DMF.	101
Figure 3: Fluorescence spectra of pyrimidines (1) 25 , (2) 27 , (3) 29 , (4) 31 , (5) 33 , (6) 34 , (7) 38 at <i>c</i> = 10 μM in DMF	101
Figure (4A): Effect of compound 9, compound 17 and compound 30 administration for 28 days orally on Body weight (gm), in male rats.	103
Figure (4B): Effect of compound 9, compound 17 and compound 30 administration for 28 days orally on Liver weight (gm), in male rats.	104
Figure (4C): Effect of compound 9, compound 17 and compound 30 administration for 28 days orally on Kidney weight (gm), in male rats.	104
Figure (5A): Effect of compound 9, compound 17 and compound 30 administration for 28 days orally on serum alanine aminotransferase (ALT), in male rats.	106
Figure (5B): Effect of compound 9, compound 17 and compound 30 administration for 28 days orally on serum aspartate aminotransferase (AST), in male rats.	106
Figure (5C): Effect of compound 9, compound 17 and compound 30 administration for 28 days orally on serum alkaline phosphatase (ALP) in male rats.	107
Figure (6A): Effect of compound 9, compound 17 and compound 30 administration for 28 days orally on	108

Title	Page
serum urea. in male rats.	
Figure (6B): Effect of compound 9, compound 17 and compound 30 administration for 28 days orally on creatinine in male rats.	108
Figure (7): Effect of compound 9, compound 17 and compound 30 administration for 28 days orally on serum ChE activity in male rats.	110
Figure (8A): Effect of compound 9, compound 17 and compound 30 administration for 28 days orally on serum total proteins in male rats	112
Figure (8B): Effect of compound 9 , compound 17 and compound 30 administration for 28 days orally on serum hemoglobin (Hb) in male rats.	113
Figure (8C): Effect of compound 9 , compound 17 and compound 30 administration for 28 days orally on serum malondialdehyde (MDA) in male rats.	113
Figure (8D): Effect of compound 9 , compound 17 and compound 30 administration for 28 days orally on serum total antioxidant capacity (TAC) in male rats.	114
Figure (9A): Representative hematoxylin and eosin-stained photomicrographs (H&E ×400) of rat liver sections, Liver tissue section from the control group with a normal hepatic morphology, Central vein (CV).	115
Figure (9B): Representative hematoxylin and eosin-stained photomicrographs (H&E ×400) of rat liver sections treated with compound 9 .	115
Figure (9C): Representative hematoxylin and eosin-stained photomicrographs (H&E ×400) of rat liver sections treated with compound 17 .	116

Title	Page
Figure (9D): Representative hematoxylin and eosin-stained photomicrographs (H&E ×400) of rat liver sections treated with compound 30 .	116
Figure (10A) : Representative histopathological images of rat's renal tissue stained with hematoxylin and eosin (H& E ×400).	117
Figure (10B): Representative histopathological images of rat's renal tissue stained with hematoxylin and eosin (H& E ×400) of group received compound 9 .	118
Figure (10C): Representative histopathological images of rat's renal tissue stained with hematoxylin and eosin (H& E ×400) of Rats treated with compound 17 .	118
Figure (10D): Representative histopathological images of rat's renal tissue stained with hematoxylin and eosin (H& E ×400) of group treated with compound 30 .	119
Figure 11: IR spectrum of compound 5	120
Figure 12: ¹ H-NMR spectrum of compound 5 (DMSO-d ₆)	120
Figure 13: ¹ H-NMR spectrum (D ₂ O) of compound 5 (DMSO-d ₆)	121
Figure 14: ¹³ C-NMR spectrum of compound 5 (DMSO-d ₆)	121
Figure 15: IR spectrum of compound 8	122
Figure 16: ¹ H-NMR spectrum of compound 8 (DMSO-d ₆)	122
Figure 17: ¹ H-NMR spectrum (D ₂ O) of compound 8 (DMSO-d ₆)	123
Figure 18: ¹³ C-NMR spectrum of compound 8 (DMSO-d ₆)	123
Figure 19: IR spectrum of compound 9	124
Figure 20: ¹ H-NMR spectrum of compound 9 (DMSO-d ₆)	124
Figure 21: IR spectrum of compound 10a	125
Figure 22: ¹ H-NMR spectrum of compound 10a (DMSO-d ₆)	125

Title	Page
Figure 23: ¹³ C-NMR spectrum of compound 10a (DMSO-d ₆)	126
Figure 24: IR spectrum of compound 10b	126
Figure 25: ¹ H-NMR spectrum of compound 10b (DMSO-d ₆)	127
Figure 26: ¹³ C-NMR spectrum of compound 10b (DMSO-d ₆)	127
Figure 27: IR spectrum of compound 12a	128
Figure 28: ¹ H-NMR spectrum of compound 12a (DMSO-d ₆)	128
Figure 29: ¹ H-NMR spectrum (D ₂ O) of compound 12a	129
$(DMSO-d_6)$	
Figure 30: ¹³ C-NMR spectrum of compound 12a (DMSO-d ₆)	129
Figure 31: IR spectrum of compound 12b	130
Figure 32: ¹ H-NMR spectrum of compound 12b (DMSO-d ₆)	130
Figure 33: ¹ H-NMR spectrum (D ₂ O) of compound 12b (DMSO-d ₆)	131
Figure 34: ¹³ C-NMR spectrum of compound 12b (DMSO-d ₆)	131
Figure 35: IR spectrum of compound 14	132
Figure 36: ¹ H-NMR spectrum of compound 14 (DMSO-d ₆)	132
Figure 37: ¹ H-NMR spectrum (D ₂ O) of compound 14	133
$(DMSO-d_6)$	
Figure 38: ¹³ C-NMR spectrum of compound 14 (DMSO-d ₆)	133
Figure 39: IR spectrum of compound 17	134
Figure 40: ¹ H-NMR spectrum of compound 17 (DMSO-d ₆)	134
Figure 41: ¹³ C-NMR spectrum of compound 17 (DMSO-d ₆)	135
Figure 42: IR spectrum of compound 21a	135
Figure 43: ¹ H-NMR spectrum of compound 21a (DMSO-d ₆)	136
Figure 44: ¹ H-NMR spectrum (D ₂ O) of compound 21a	136
$(DMSO-d_6)$	
Figure 45: ¹³ C-NMR spectrum of compound 21a (DMSO-d ₆)	137

Title	Page
Figure 46: IR spectrum of compound 21b	137
Figure 47: ¹ H-NMR spectrum of compound 21b (DMSO-d ₆)	138
Figure 48: ¹ H-NMR spectrum (D ₂ O) of compound 21b (DMSO-d ₆)	138
Figure 49: ¹³ C-NMR spectrum of compound 21b (DMSO-d ₆)	139
Figure 50: IR spectrum of compound 21c	139
Figure 51: ¹ H-NMR spectrum of compound 21c (DMSO-d ₆)	140
Figure 52: ¹ H-NMR spectrum (D ₂ O) of compound 21c (DMSO-d ₆)	140
Figure 53: ¹³ C-NMR spectrum of compound 21c (DMSO-d ₆)	141
Figure 54: IR spectrum of compound 21d	141
Figure 55: ¹ H-NMR spectrum of compound 21d (DMSO-d ₆)	142
Figure 56: ¹ H-NMR spectrum (D ₂ O) of compound 21d (DMSO-d ₆)	142
Figure 57: ¹³ C-NMR spectrum of compound 21d (DMSO-d ₆)	143
Figure 58: IR spectrum of compound 23	143
Figure 59: ¹ H-NMR spectrum of compound 23 (DMSO-d ₆)	144
Figure 60: ¹ H-NMR spectrum (D ₂ O) of compound 23 (DMSO-d ₆)	144
Figure 61: ¹³ C-NMR spectrum of compound 23 (DMSO-d ₆)	145
Figure 62: IR spectrum of compound 25	145
Figure 63: ¹ H-NMR spectrum of compound 25 (DMSO-d ₆)	146
Figure 64: ¹ H-NMR spectrum (D ₂ O) of compound 25 (DMSO-d ₆)	146
Figure 65: IR spectrum of compound 27	147
Figure 66: ¹ H-NMR spectrum of compound 27 (DMSO-d ₆)	147
Figure 67: ¹ H-NMR spectrum (D ₂ O) of compound 27 (DMSO-d ₆)	148

Title	Page
Figure 68: IR spectrum of compound 29	148
Figure 69: ¹ H-NMR spectrum of compound 29 (DMSO-d ₆)	149
Figure 70: ¹ H-NMR spectrum (D ₂ O) of compound 29 (DMSO-d ₆)	149
Figure 71: ¹³ C-NMR spectrum of compound 29 (DMSO-d ₆)	150
Figure 72: IR spectrum of compound 30	150
Figure 73: ¹ H-NMR spectrum of compound 30 (DMSO-d ₆)	151
Figure 74: ¹ H-NMR spectrum (D ₂ O) of compound 30 (DMSO-d ₆)	151
Figure 75: ¹³ C-NMR spectrum of compound 30 (DMSO-d ₆)	152
Figure 76: IR spectrum of compound 31	152
Figure 77: ¹ H-NMR spectrum of compound 31 (DMSO-d ₆)	153
Figure 78: ¹³ C-NMR spectrum of compound 31 (DMSO-d ₆)	153
Figure 79: IR spectrum of compound 33	154
Figure 80: ¹ H-NMR spectrum of compound 33 (DMSO-d ₆)	154
Figure 81: ¹ H-NMR spectrum (D ₂ O) of compound 33 (DMSO-d ₆)	155
Figure 82: IR spectrum of compound 34	155
Figure 83: ¹ H-NMR spectrum of compound 34 (DMSO-d ₆)	156
Figure 84: ¹ H-NMR spectrum (D ₂ O) of compound 34 (DMSO-d ₆)	156
Figure 85: ¹³ C-NMR spectrum of compound 34 (DMSO-d ₆)	157
Figure 86: IR spectrum of compound 38	157
Figure 87: ¹ H-NMR spectrum of compound 38 (DMSO-d ₆)	158
Figure 88: ¹³ C-NMR spectrum of compound 38 (DMSO-d ₆)	158

Abbreviations

Ac.	Acetyl
Anal. Calcd.	Analyses Calculated
Ar	Aryl
br	Broad
Bu	Butyl
CHCl ₃	Chloroform
CO ₂	Carbon dioxide
Conc	Concentrated
D ₂ O	Deuterium oxide
DCM	Dichloromethane
DMF	Dimethyl formamide
DNA	Deoxy ribonucleic acid
Et	Ethyl
h	Hour(s)
LC ₅₀	The concentration that induces 50% growth inhibition
LDA	Lithium diisopropyl amide
Me	Methyl
MHz	Mega Hertz
ML	Microliliter
ml,	Milililiter
Мр	Melting point
MW	Microwave
NMR	Nuclear magnetic resonance spectroscopy
р-	para
PBr ₃	Phosphorus Tribromide
Ph	Phenyl
PPM	Parts per million (NMR)
Pr	Propyl
RNA	Ribonucleic acid
rt.	Room temperature
TBAHS	Tetrabutylammonium hydrogen sulphate
UV	Visible ultraviolet
δ	delta (NMR)