

Tanta University Faculty of Agriculture Department of Horticulture

EFFECT OF SOME AGRICULTURAL PRACTICES ON GROWTH, FLOWERING, FRUITING AND QUALITY OF FRIGO STRAWBERRY BY

Salah El-Sayed Salah Atia

B. Sc. (Agric.), Tanta University, 2012

M.Sc. (Agric.), Tanta University, 2017

THESIS

Submitted in Partial Fulfillment for

the Requirements for the Ph.D. degree

In

Agriculture Science (Horticulture-Vegetables)

(Horticulture Department)

Faculty of Agriculture

Tanta University

2021

ABSTRACT

Three field experiments on strawberry were conducted at a private farm in Shoney Village, Tanta, El-Gharbia Governorate, Egypt, during the two successive seasons of 2019/2020 and 2020/2021, to study the effect of the removal of old leaves near to the soil surface (without, two, four, and six leaves' removal); the effect of spraying (SA) at 0, 5, 10, and 15mM/L; at calgen 0, and 2cm³/L, Furthermore, the solupotasse at 0 and 5g/L. The strawberry cultivated variety used was Monterey. The research aimed to study the effect of the above mentioned treatments on growth, flowering, yield, and quality of strawberry fruits that cultivated with cold stored transplants (Frigo). The results recorded that non removing for leaves had the best results in most of the studied traits. Moreover, spraying with SA at 5mM/L; 2cm³/L of calgen plus 5g/L solupotasse led to the highest significant increase in growth, yield, quality, and chemical constituents in both seasons. Moreover, all studied treatments had a significant effect to decrease infected fruits with grey mold in early and total yield compared to control in both seasons. Conclusively, non removing for leaves or spraying of SA at 5mM/L or 2cm³/L of calgen, and spraying 5g/L solupotasse had the best results in most of the studied traits except on early and total yield infected with grey mold.

Key words: Frigo strawberry; Leaves' removal; Salicylic acid; Calcium plus Boron; K₂So₄; Yield; Fruit quality; Chemical composition.

LIST OF CONTENTS

Title	Page
I. INTRODUCTION	1
II. REVIEW OF LITERATURE	4
II. 1. Effect of the removal of leaves on strawberry	4
II. 1. 1. Effect of the removal of leaves on vegetative growth	8
II. 1. 2. Effect of the removal of leaves on flowering	8
II. 1. 3. Effect of the removal of leaves on yield and its components	9
II. 1. 4. Effect of the removal of leaves on chemical composition	10
II. 2. Effect of salicylic acid spraying on strawberry	11
II. 2. 1. Effect salicylic acid spraying on vegetative growth	14
II. 2. 2. Effect of salicylic acid spraying on flowering	15
II. 2. 3. Effect of salicylic acid spraying on yield and its components	16
II. 2. 4. Effect of salicylic acid spraying on chemical composition	19
II. 3. Effect of calcium plus boron spraying on strawberry	21
II. 3. 1. Effect of calcium plus boron spraying on vegetative growth	23
II. 3. 2. Effect of calcium plus boron spraying on Flowering	24
II. 3. 3. Effect of calcium plus boron spraying on yield and its components	25
II. 3. 4. Effect of calcium plus boron spraying on chemical composition	28
II. 4. Effect of K ₂ So ₄ spraying on strawberry	29
II. 4. 1. Effect K ₂ So ₄ spraying on vegetative growth	31
II. 4. 2. Effect of K ₂ So ₄ spraying on flowering	32
II. 4. 3. Effect of K ₂ So ₄ spraying on yield and its components	32
II. 4. 4. Effect of K ₂ So ₄ spraying on chemical composition	34
III. MATERIALS AND METHODS	36
III. 1. Experimental design	37

III. 2. Data recorded	38
III. 3. Statistical analysis	42
IV. RESULTS AND DISCUSSION	43
IV.1. Effect of the removal of leaves	43
IV. 1. 1. Vegetative growth characters	43
IV. 1. 2. Number of flowers	44
IV. 1. 3. Yield and its components	45
IV.1. 4. Chemical composition	54
IV.2. Effect of salicylic acid spraying	57
IV. 2. 1. Vegetative growth characters	57
IV. 2. 2. Number of flowers	59
IV. 2. 3. Yield and it's components	60
IV. 2. 4. Chemical composition	69
IV. 3. The effect of calgen and solupotasse spraying	72
IV. 3. 1. Vegetative growth characters	72
IV. 3. 2. Number of flowers	74
IV. 3. 3. Yield and it's components	75
IV. 3. 4. Chemical composition	85
V. SUMMARY	89
VI. REFERENCES	92
ARABIC SUMMARY	116

LIST OF TABLES

Table	Title	Page
Table (1):	Physical and chemical properties of the experiment soil	36
Table (2):	Effect of leaves' removal, on plant height, number of leaves and roots of strawberry plant during 2019/2020 and 2020/2021 seasons	43
Table (3):	Effect of leaves' removal, on leaf area and dry weight of strawberry leaves during 2019/2020 and 2020/2021 seasons	44
Table (4):	Effect of leaves' removal, on number of days to first flowering, early and total flowers number of strawberry plant during 2019/2020 and 2020/2021 seasons	45
Table (5):	Effect of leaves' removal, on some physical fruit characters of strawberry during 2019/2020 and 2020/2021 seasons	46
Table (6):	Effect of leaves' removal, on number of early and total fruits, early and total yield of strawberry fruits during the 2019/2020 and 2020/2021 seasons	49
Table (7):	Effect of leaves' removal, on early and total distorted yield, early and yield infected with grey mold of strawberry fruits during the 2019/2020 and 2020/2021 seasons	52
Table (8):	Effect of leaves' removal, on chlorophyll a, b, and total of strawberry leaves during the 2019/2020 and 2020/2021 seasons	54
Table (9):	Effect of leaves' removal, on vitamin-C, total total acidity and T.S.S. of strawberry fruits during the 2019/2020 and 2020/2021 seasons	55

	Effect of leaves' removal, on reducing, non-reducing, and	
Table (10):	total sugars of strawberry fruits during 2019/2020 and	56
	2020/2021 seasons	
	Effect of leaves' removal, on N, P and K of strawberry	
Table (11):	leaves during 2019/2020 and 2020/2021 seasons	56
T-LL (19).	Effect of leaves' removal, on K, Ca, and anthocyanin of	57
Table (12):	strawberry fruits during 2019/2020 and 2020/2021 seasons	57
	Effect of salicylic acid, on plant height, number of leaves	
Table (13):	and roots of strawberry plant during 2019/2020 and	58
	2020/2021 seasons	
	Effect of salicylic acid, on leaf area and dry weight of	
Table (14):	strawberry leaves during 2019/2020 and 2020/2021	59
	seasons	
	Effect of salicylic acid, on number of days to first	
Table (15):	flowering, early and total flowers number of strawberry	60
	plant during 2019/2020 and 2020/2021 seasons	
Table (16):	Effect of salicylic acid, on some physical fruit characters of	61
1able (10).	strawberry during 2019/2020 and 2020/2021 seasons	01
	Effect of salicylic acid, on number of early and total fruits,	
Table (17):	early and total yield of strawberry during the 2019/2020	64
	and 2020/2021 seasons	
	Effect of salicylic acid, on early and total distorted yield,	
Table (18):	early and total yield infected with grey mold of strawberry	67
	fruits during the 2019/2020 and 2020/2021 seasons	
	Effect of salicylic acid, on chlorophyll a, b and total of	
Table (19):	strawberry leaves during the 2019/2020 and 2020/2021	69
	seasons	

Table (20):	Effect of salicylic acid, on vitamin-C, total acidity and T.S.S. of strawberry fruits during the 2019/2020 and 2020/2021 seasons	70
Table (21):	Effect of salicylic acid, on reducing, non-reducing and total sugars of strawberry fruits during 2019/2020 and 2020/2021 seasons	71
Table (22):	Effect of salicylic acid, on N, P and K of strawberry leaves during 2019/2020 and 2020/2021 seasons	71
Table (23):	Effect of salicylic acid, on K, Ca, and anthocyanin of strawberry fruits during 2019/2020 and 2020/2021 seasons	72
Table (24):	Effect of calgen and solupotasse, on plant height, number of leaves, and roots of strawberry plant during 2019/2020 and 2020/2021 seasons	73
Table (25):	Effect of calgen and solupotasse, on leaf area and dry weight of strawberry leaves during 2019/2020 and 2020/2021 seasons	74
Table (26):	Effect of calgen and solupotasse, on number of days to first flowering, early and total flowers number of strawberry plant during 2019/2020 and 2020/2021 seasons	75
Table (27):	Effect of calgen and solupotasse, on some physical fruit characters of strawberry during 2019/2020 and 2020/2021 seasons	76
Table (28):	Effect of calgen and solupotasse, on number of early and total fruits, early and total yield of strawberry fruits during the 2019/2020 and 2020/2021 seasons	79

Table (29):	Effect of calgen and solupotasse, on early and total distorted yield, early and total yield infected with grey mold of strawberry fruits during the 2019/2020 and 2020/2021 seasons	82
Table (30):	Effect of calgen and solupotasse, on chlorophyll a, b, and total of strawberry leaves during the 2019/2020 and 2020/2021 seasons	85
Table (31):	Effect of calgen and solupotasse, on vitamin-C, total acidity and T.S.S. of strawberry fruits during the 2019/2020 and 2020/2021 seasons	86
Table (32):	Effect of calgen and solupotasse, on reducing, non- reducing and total sugars of strawberry fruits during 2019/2020 and 2020/2021 seasons	87
Table (33):	Effect of calgen and solupotasse, on N, P and K of strawberry leaves during 2019/2020 and 2020/2021 seasons	87
Table (34):	Effect of calgen and solupotasse, on K, Ca and anthocyanin of strawberry fruits during 2019/2020 and 2020/2021 seasons	88

LIST OF FIGURES

Figure	Title	Page
Fig. (1):	Effect of leaves' removal, on average fruit volume of strawberry during 2019/2020 and 2020/2021 seasons	46
Fig. (2):	Effect of leaves' removal, on average fruit weight of strawberry fruits during 2019/2020 and 2020/2021 seasons	47
Fig. (3):	Effect of leaves' removal, on average fruit index of strawberry fruits during 2019/2020 and 2020/2021 seasons	47
Fig. (4):	Effect of leaves' removal, on fruit firmness of strawberry fruits during 2019/2020 and 2020/2021 seasons	48
Fig. (5):	Effect of leaves' removal, on number of early fruits of strawberry during 2019/2020 and 2020/2021 seasons	49
Fig. (6):	Effect of leaves' removal, on number of total fruits of strawberry during 2019/2020 and 2020/2021 seasons	50
Fig. (7):	Effect of leaves' removal, on early yield of strawberry fruits during 2019/2020 and 2020/2021 seasons	50
Fig. (8):	Effect of leaves' removal, on total yield of strawberry fruits during 2019/2020 and 2020/2021 seasons	51
Fig. (9):	Effect of leaves' removal, on early distorted yield of strawberry fruits during 2019/2020 and 2020/2021 seasons	52
Fig. (10):	Effect of leaves' removal, on total distorted yield of strawberry fruits during 2019/2020 and 2020/2021 seasons	53
Fig. (11):	Effect of leaves' removal, on early yield infected with grey mold of strawberry fruits during 2019/2020 and 2020/2021 seasons	53
Fig. (12):	Effect of leaves' removal, on total yield infected with grey	54

	mold of strawberry fruits during 2019/2020 and 2020/2021	
	seasons	
Fig. (13):	Effect of salicylic acid, on average fruit volume of strawberry	61
	fruits during 2019/2020 and 2020/2021 seasons	
$\mathbf{Fig} \ (14),$	Effect of salicylic acid, on average fruit weight of strawberry	62
Fig. (14).	fruits during 2019/2020 and 2020/2021 seasons	
$\mathbf{Fig} \ (15)$	Effect of salicylic acid, on average fruit index of strawberry	62
Fig. (13).	fruits during 2019/2020 and 2020/2021 seasons	
$\mathbf{Fig} \ (16)$	Effect of salicylic acid, on fruit firmness of strawberry fruits	63
rig. (10).	during 2019/2020 and 2020/2021 seasons	
Fig. (17).	Effect of salicylic acid, on number of early fruit of strawberry	64
Fig. (17):	during 2019/2020 and 2020/2021 seasons	
F . (19)	Effect of salicylic acid, on number of total fruit of strawberry	65
rig. (10).	during 2019/2020 and 2020/2021 seasons	
$\mathbf{Fig} \ (10)$	Effect of salicylic acid, on early yield of strawberry fruits	65
rig. (19).	during 2019/2020 and 2020/2021 seasons	
$\mathbf{Fig} (20)$	Effect of salicylic acid, on total yield of strawberry fruits	66
Fig. (20).	during 2019/2020 and 2020/2021 seasons	
$\mathbf{Fig} (21)$	Effect of salicylic acid, on early distorted yield of strawberry	67
rig. (21):	fruits during 2019/2020 and 2020/2021 seasons	
Fig. (22).	Effect of salicylic acid, on total distorted yield of strawberry	68
Fig. (22).	fruits during 2019/2020 and 2020/2021 seasons	
Fig. (23).	Effect of salicylic acid, on early yield infected with grey mold	68
Fig. (23).	of strawberry fruits during 2019/2020 and 2020/2021 seasons	
$\mathbf{Fig} (24)$	Effect of salicylic acid, on total yield infected with grey mold	69
r 1g. (24):	of strawberry fruits during 2019/2020 and 2020/2021 seasons	

$\mathbf{Fig} \ (25)$	Effect calgen and solupotasse, on average fruit volume of	76
115. (40).	strawberry fruits during 2019/2020 and 2020/2021 seasons	
$\mathbf{Fig} (26)$	Effect of calgen and solupotasse, on average fruit weight of	77
r 1g. (20):	strawberry fruits during 2019/2020 and 2020/2021 seasons	
Fig. (27).	Effect of calgen and solupotasse, on average fruit index of	77
Fig. (27).	strawberry fruits during 2019/2020 and 2020/2021 seasons	
$\mathbf{Fig} (28)$	Effect of calgen and solupotasse, on fruit firmness of	78
Fig. (20).	strawberry fruits during 2019/2020 and 2020/2021 seasons	
Fig. (20).	Effect of calgen and solupotasse, on number of early fruits of	79
Fig. (29):	strawberry fruits during 2019/2020 and 2020/2021 seasons	
Fig. (30).	Effect of calgen and solupotasse, on number of total fruits of	80
r 1g. (30):	strawberry fruits during 2019/2020 and 2020/2021 seasons	00
Fig. (31).	Effect of calgen and solupotasse, on early yield of strawberry	80
Fig. (31).	fruits during 2019/2020 and 2020/2021 seasons	00
Fig. (32).	Effect of calgen and solupotasse, on total yield of strawberry	8 1
115. (32).	fruits during 2019/2020 and 2020/2021 seasons	01
Fig. (33).	Effect of calgen and solupotasse, on early distorted yield of	83
Fig. (33).	strawberry fruits during 2019/2020 and 2020/2021 seasons	05
Fig. (34).	Effect of calgen and solupotasse, on total distorted yield of	83
Fig. (34):	strawberry fruits during 2019/2020 and 2020/2021 seasons	83
	Effect of calgen and solupotasse, on early yield infected with	
Fig. (35):	grey mold of strawberry fruits during 2019/2020 and	84
	2020/2021 seasons	
Fig. (36):	Effect of calgen and solupotasse, on total early yield infected	
	with grey mold of strawberry fruits during 2019/2020 and	84
	2020/2021 seasons	