ACTIVITY OF SOME NANO PARTICLES IN CONTROLLING BEAN YELLOW MOSAIC VIRUS ON FABA BEAN

BY

AHMED YOUSEF SOBHY MAHMOUD EL GAMAL

B.Sc. in Agriculture (Plant Pathology), Fac. Agric., Fayoum Univ., Egypt, 2009
Postgraduate Diploma in Integrated Pest Management, CIHEAM-Bari, Italy, 2013
M.Sc. in Agriculture (Plant Pathology), Fac. Agric., Zagazig Univ, Egypt, 2016

A dissertation submitted in partial fulfillment of the requirement for the degree of

DOCTOR OF PHILOSOPHY (Ph.D.)

in

Agricultural Sciences (Plant Pathology)

Plant Pathology Department Faculty of Agriculture Zagazig University 2022

ABSTRACT

Nanotechnology has emerged as a new potential powerful tool to control viral plant diseases. This study was carried out to evaluate the effectiveness of four nanoparticles namely silver nanoparticles (AgNPs), chitosan nanoparticles (ChiNPs), chitosan-silver nanocomposites (Chi-AgNPs) and chitosan-salicylic acid nanocomposites (Chi-SalNPs) in managing Bean yellow mosaic virus (BYMV) on faba bean plants from the plant-virusvector interaction side. The antiviral capability was evaluated as a foliar application, seed soaking and seed /foliar combination methods. The efficiency of tested nanoparticles on virus acquisition and transmission by its aphid vector was investigated as well as potential treatments to affect the vector aphid population dynamics. The results indicated that all tested nanoparticles significantly reduced the virus infectivity and accumulation content in treated plants notably when applied as foliar application and seed/foliar combination. Nano-silver was exhibited high curative viricidal activities to inactivate BYMV when applied 48 h post-virus inoculation. The disease occurrence was entirely inhibited with AgNPs rate as low as 100 mg. 1⁻¹, whereas the infectivity was completely inhibited when plants were exposed to 200 mg.1-1 24 h before-virus inoculation. However, ChiNPs, Chi-AgNPs and Chi-SalNPs completely inhibited the virus infectivity at 400 mg.l⁻¹ when applied as a foliar protective method. Seed soaking applications of Chi-AgNPs and Chi-Sal NPs were the most effective treatments in reducing the virus infectivity followed by ChiNPs and AgNPs. Interestingly, transmission electron microscope illustrated that AgNPs proved to be highly bio-reactive by binding to the virus particles, while the ChiNPs were found to affect the virus particle's integrity by producing defective and incomplete BYMV particles, suppressing their replication and accumulation within the plant tissues. Moreover, both AgNPs and ChiNPs were significantly found to upregulate the pathogenesis-related gene (PR-1) and promote the protein profile in treated plants irrespective of concentration. The mRNA of PR-1 gene was remarkedly accumulated in treated plants reaching its maximum with 12.06 and 16.22 fold change at 200 mg.l⁻¹ AgNPs and 400 mg.l⁻¹ ChiNPs dosage rates respectively. The ability of tested nanoparticles to trigger defense-related oxidizing enzymes was also examined. The higher activity of phenylalanine ammonolyses (PAL) and polyphenol oxidase (PPO) was recorded in faba bean plants treated with Chi-SalNPs and ChiNPs, while the lowest response was noted with

all tested AgNPs rates. Peroxidase (PO) activity was significantly prompted with all tested nanoparticles reaching its maximum with AgNPs (at 250 mg.l⁻¹) followed by Chi-AgNPs (at 300 mg.l⁻¹) Chi-SalNPs (at 400 mg.l⁻¹) and ChiNPs (at 250 mg.l⁻¹). Furthermore, the total phenols were remarkably promoted for 30 days in response to ChiNPs, Chi-AgNPs and Chi-SalNps applied as seed soaking at 400 mg.l⁻¹, compared to untreated control. Importantly, exposure of aphids to AgNPs-treated plants before virus acquisition reduced BYMV acquisition and transmission efficiency by 40.65% to 100 % at 24 h postapplication depending on the AgNPs dosage. Further, the virus acquisition was reduced for 10 day-post treatments by 6.87% up to 79.64% depending on the dosage rate. On the other hand, the virus transmission by aphids in faba bean plants treated with tested nanoparticles 24 h before the biological inoculation of BYMV by viruliferous aphids was observed. The complete reduction in virus transmission was obtained with AgNPs at a low rate of 150 mg.l⁻¹ dosage, followed by Chi-AgNPs and ChiNPs at 250 and 300 mg.l⁻¹ dosage rates respectively. Moreover, all tested nanoparticles reduced the aphid population density after 30 days of application on treated faba bean plants. ChiNPs (400 mg.l⁻¹), Chi-AgNPs (400 mg.l⁻¹) and AgNPs (300 mg.l⁻¹) were the most effective treatments in reducing the aphid population by 96.64%, 95.89% and 92.15, respectively. Meanwhile, Chi-SalNPs reduce the aphid population by 80.56 % compared to untreated control.

Finally, these results confirm that the constructed nanoparticles are powerful and promising antiviral agents to manage BYMV disease. This study also provides the first report on the deterring activity of nanomaterials on plant virus acquisition and transmission by its insect vector. Simultaneously, the tested nanoparticles can affect the vector feeding behavior and alter virus-aphid transmissibility, suggesting that it may contribute to alleviating the natural disease occurrence and virus transmission under field conditions.

ABBREVIATIONS

θ	Theta angel
Δ	Delta
A°	Angstrom
A ₄₀₅	Absorbtion at 405 nm
AAP	Acquisition access period
AgNO ₃	Silver nitrate
AgNPs	Silver nanoparticles
AMV	Alfalfa mosaic virus
ANOVA	Analysis of variance
bp	Base pair
BYMV	Bean yellow mosaic virus
°C	Degree celsius
CABI	Centre for Agriculture and Bioscience
	International
C+ve	Positive control
C-ve	Negative control
ChiNPs	Chitosan nanoparticles
Chi-AgNPs	Chitosan-silver nanocomposites
Chi-SalNps	Chitosan-salycalic acid nanocomposites
cm	Centimeter
cm ²	Centimeter square
Conc.	Concentrations
CP gene	Coat protein gene
CV.	Cultivar
Ct. value	Cycle threshold
DI	Disease incidence
DS	Disease severity
dw	Distilled water
DAS-ELISA	Double antibody sandwich – Enzyme-
	linked Immunosorbent Assay
F.A	Foliar application
FAO	Food and agriculture organization of the
	united nations
g	gram
Gov.	governorate
h	hour (s)
HR-TEM	High resolution- transmission electron
	Microscope
gfw	gram fresh weight
kb	Kilobase
kDa	Kilodalton
LA	Leaf area
LL	Leaflet length

LW	Leaf width
LSD	Least significant difference
М	Molar (concentration)
mA	Milliampere
mg	Milligram
mg.l ⁻¹	Milligram per liter
min.	Minute
μl	Microliter
ml.	Milliliter
mmol	Milimole
Ν	Normality (concentration)
ng	Nanogram
No.	Number
nmol	Nanomole
OD	Optical density
Na ₂ CO ₃	Sodium carbonate
NaOH	Sodium hydroxide
nm	nanometer
PAL	Phenylalanine ammonia-lyase
PO	Peroxidase
PPO	Polyphenol oxidase
pH	Potential of Hydrogen
PR-proteins	Pathogenesis-related proteins
PSbMV	Pea seed-born mosaic virus
Red.	Reduction
RH	Relative humidity
rpm	Revolutions per minute
RT-PCR	Reveres transcription-polymerase chain
	reaction
qRT-PCR	Quantitative reverse transcription-
	polymerase chain reaction
SA	Salicylic acid
Sec.	Second
SDS	Sodium dodecyl sulfate
SSA	Seed soaking application
SFA	Seed/ foliar combinations
TEM	Transmission Electron Microscope
Treat.	Treatments
TPC	Total phenolic content
v/v	Volume per volume
w/v	Weight per volume
xg	(X) Earth's gravitational force
XRD	X-ray diffraction

CONTENTS

ABSTRACT	
ACKNOWLEDGMENT	
ABBREVIATIONS	
LIST OF TABLES	vi
LIST OF FIGURES	xi
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
 2.1. Nanotechnology approach and crop protection 2.2. Faba bean crisis in Egypt 2.3.1. <i>Bean yellow mosaic virus</i> (BYMV) 2.3.2. Host range and symptomatology of BYMV 	4 8 10 11
 2.3.3. Means of transmission	14 14 15 15 17
2.3.5. 1. Serological identification2.3.5.2. Molecular identification	17 17
2.3.5.2.1. Reverse transcription-polymerase chain reaction (RT-PCR)	17
2.4. Nanotechnology-based tools in plant viral disease management2.4.1. Silver metallic nanoparticles	19 19
2.4.2. Natural polymers	21
2.4.3. Salicylic acid	24
3. MATERIALS AND METHODS	26
3.1. Virus isolation and identification	26 26
3.1.2. Virus isolation and propagation	27
 3.1.3. Biological characterizations. 3.1.3.1. Host range and symptomatology. 3.1.3.2. Transmission of isolated BYMV. 3.1.3.2.1. Mechanical transmission (Sap inoculation)	27 27 28 28 28

3.1.3.2.2.1. Aphid cultures	28
3.1.3.2.2.2. Aphid transmission assay	28
3.1.3.2.3. Seed transmission	30
3.1.4. Serological characterization	30
3.1.4.1. Double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA)	30
3.1.5. Molecular characterization of isolated virus	33
3.1.5.1. Total RNA extraction	33
3.1.5.2. One-step reverse transcription (RT)-PCR reaction of BYMV-Coatprotein (CP) gene	34 34
3.1.5.4. PCR file conditions	34
3.1.5.5. PCR product verification	34
3.1.6. Particle morphology of isolated BYMV	35
3.2. Preparation and characterization of nanomaterials	35
3. 2.1. Preparation of tested nanomaterials	35
3.2.1.1. Silver nanoparticles (AgNPs)	35
3.2.1.2. Chitosan nanoparticles (ChiNPs)	36
3.2.1.3. Chitosan-silver nanocomposite (Chi-Ag-NPs)3.2.1.4. Chitosan-salicylic acid nanocomposite (Chi/Sal-NPs)	36 37
3.2.2. Characterization of constructed nanomaterials	37
3.2.2.1. Particle size determination3.2.2.2. X-ray diffraction (XRD) measurement	37 37
3.2.2. 3. Morphology of the prepared nanoparticles	38
3.3. Effectiveness of the constructed nanomaterials on host-virus	
interaction	40
3.3.1. Effects of tested nanoparticles on virus infectivity3.3.1.2. Disease assessments3.3.1.3. Determination of virus accumulation	40 41 41
3.3.1.4. Effect of AgNPs and ChiNPs on virion particiles	42
3.3.2. Determination of defense-related enzymes	42
3.3.2.1. Treatments and sampling for enzyme assays3.3.2.2. Phenylalanine ammonia-lyase activity	42 43

3.3.2.3. Polyphenol oxidase and peroxidase activities3.3.3. Protein pattern analysis	43 44
3.3.4. PR-1 gene expression analysis using quantitative real time-PCR (qRT-PCR)	45
3 3 4 1 Total RNA isolation	45
3.3.4.2. cDNA synthesis	45
3.3.4.3. gRT-PCR analysis	45
3.3.5. Determination of total phenolic content (TPC)	46
3.3.5. 1. Treatments and sample collecting	46
3.3.5. 2. Leaf extraction for TPC assay	47
3.3.5. 3. Total phenolic content assay	47
3.3.6. Vegetative and growth parameters assessments	48
3.4. Effectiveness of the constructed nanomaterials on plant-vector -virus	
interactions	49
3.4.1. Effect of on virus acquisition and transmission.	49
3 4 1 2 Pre-acquisition treatments and tested concentrations	49
341 3 Acquisition assay	49
3.4.1.4. Coat protein gene accumulation	50
3.4.2. Effect on virus – aphid transmissibility	50
3.4.3. Effect on aphid population dynamic	51
3.5. Statistical analysis	51
4. RESULTS	53
4.1. Virus isolation and identification	53
4.1.2. Virus source, field symptoms and disease incidence	53
4.1.2. Virus isolation	53
4.1.3. Host range and symptomatology	53
4.1.4. Virus transmission	60
4.1.5. Double antibody sandwiches- enzyme-linked immunosorbent assay	60
(DAS-EISA) 4.1.6. Molecular characterization of isolated BYMV	62
4.1.7. Transmission electron microscopy and particle morphology	62
4.2 Characterization of constructed non-emotorials	64
4.2.1. Silver nanoparticles (AgNPs)	64
4.2.2. Chitosan nanoparticles (AgNPs)	64
4.2.3 Chitosan-silver nanocomposites (Chi-AgNPs)	67
4.2.4. Chitosan-salicylic acid nanocomposites (Chi-SalNPs)	67
4.3. Effectiveness of constructed nanomaterials on plant-virus	70
interaction.	/0
4.3.1. Effect of tested nanoparticles on BYMV infectivity and disease	

components	70
4.2.1.1 Effect of chitegen nononarticles (ChiNDs) on virus infectivity	70
4.5.1.1. Effect of childsan hanoparticles (Children) of virus infectivity	70
4.3.1.1.1. Fond protective and cutative applications activity of ChiNPs	70
4.3.1. 1.2. Seed soaking and seed/fonal combinations activity of Children	/1
4.3.1.2. Effect of silver nanoparticles (AgNPs) on virus infectivity	76
4.3.1.2.1. Foliar protective and curative applications activity of AgNPs	76
4.3.1.2.2. Seed soaking and seed/foliar application activity of AgNPs	76
4.3.1.3. Effect of chitosan-silver nanocomposites (Chi-AgN)	82
4.3.1.3.1. Foliar protective and curative applications activity of Chi-AgNPs	82
4.3.1.3.2. Seed soaking and seed/foliar application activity of Chi-AgNPs	82
4.3.1.4. Effect of chitosan-salicylic acid nanocomposites (Chi-SalNPs) on	
virus infectivity	87
4.3.1.4.1. Foliar protective and curative applications activity of Chi-SalNP	87
4.3.1.4.2. Seed soaking and seed/foliar application activity of Chi-SalNPs	88
4.3.2. Effectiveness of chitosan and silver nanoparticles on virus units	92
4.3.3. Effect of tested nanoparticles on virus accumulation in faba bean	
treated plants	95
4.3.3.1. Activity of foliar protective application on BYMV accumulation	95
4.3.3.2. Efficacy of foliar curative application of tested nanomaterials on	
BYMV accumulation	99
4.3.3.3. Efficacy of seed soaking application of tested nanoparticles on	
BYMV accumulation	103
4.3.3.4. Efficacy of seed soaking in combination with foliar application of	
tested nanoparticles on BYMV accumulation content	106
4.3.4. Changes in gene transcription level and protein profile constituents	109
3.3.4.1. Effect of silver nanoparticles treatment on PR-1 gene expression	109
4.3.4.2. Effects of silver nanoparticles on protein profile constituents	109
4.3.4.3. Effects of chitosan nanoparticles on PR-1 gene expression	112
3.3.4.4. Effects of chitosan nanoparticles on protein profile constituents	112
4.3.5. Changes in total phenolic content (TPC)	114
3.3.5.1. Effects of foliar application of synthesized nanomaterials on TPC	
dynamic curve	114
4.3.5.2. Effects of seed soaking application of synthesized nanomaterials on	
TPC dynamic curve	117
4.3.6. Changes in defense-related enzyme activities in faba bean plants	
treated with tested nanoparticles	120
4.3.6.1. Effect of chitosan nanoparticles (ChiNPs) on enzyme activity	120
4.3.6.1.1. Phenylalanine ammonia-lyase activity	120
4.3.6.1.2. Polyphenoloxidase activity	123
4.3.6.1.2. Peroxidase activity	126
4.3.6.2. Effect of silver nanoparticles on enzyme activity	128
4.3.6.2. 1. Polyphenoloxidase activity	128

4.3.6.2. 2. Peroxidase activity	128
4.3.6.2. 3. Phenylalanine ammonia-lyase activity	134
4.3.6.3. Effect of chitosan-silver nanocomposite on enzyme activities	137
4.3.6.4. Effect of chitosan-salicylic nanocomposite on enzyme activities	140
4.3.6.4.1. Phenylalanine ammonia-lyase activity	140
4.3.6.4.2. Polyphenoloxidase activity	140
4.3.6.4.2. Peroxidase activity	142
4.3.7. Effects of tested nanoparticles on vegetative and growth parameters on	
faba bean plants	145
4.3.7.1. Chitosan nanoparticles applications	145
4.3.7.2. Silver nanoparticles applications	145
4.3.7.3. Chitosan-silver nanocomposites applications	150
4.3.7.4. Chitosan-salicylic acid nanoparticles applications	150
4.4. Effectiveness of the constructed nanomaterials on plant-vector -virus	
interactions	155
4.4.1. Virus -vector interaction	155
4.4.1.1. Effect of silver nanoparticles (AgNPs) on virus acquisition and	
transmissibility by aphids	155
4.4.1.2. Effect of chitosan based-nanoparticles on virus acquisition and	
transmission	159
4.4.2. Host-vector / host-virus interactions	161
4.4.2.1. Effects on virus-aphid transmission and disease response	161
4.4.2.1.1. Silver nanoparticles (AgNPs) applications	161
4.4.2.1.2. Chitosan nanoparticles (ChiNPs) applications	161
4.4.2.1.3. Chitosan-silver nanocomposite (Chi-AgNPs) applications	162
4.4.3. Effect of prepared nanoparticles on aphid population dynamic	166
5. DISCUSSION	173
6. SUMMARY AND CONCLUSION	184
7. REFERENCES	193
ARABIC SUMMARY	

LIST OF TABLES

Table		Page
1	Genotypic groups of Bean yellow mosaic virus based	
	on the hosts isolated from	12
2	Formulations and reagents of buffers used in	
	ELISA	32
3	Primers used in conventional RT-PCR, as well as the	
	selected PR-1 gene and the endogenous reference	
	gene used in qReal time-PCR experiment	46
4	Incidence proportion of Bean yellow mosaic virus	
	and two other plant viruses associated with diseased	
	and symptomatic faba bean plant samples collected during the growing seasons of $2017/2018$	54
5	Host range, symptoms response and ELISA reaction	
	of different host plant species inoculated with the	57
6	isolated BYMV	57
0	Bean yellow mosaic virus mechanical and seed	
	transmissibility on faba bean plants experimentally	
	grown under insect-proof greenhouse conditions	61
7	Percentage of transmission of the isolated Bean	
	yellow mosaic virus by two aphid insect species on	
	faba bean plants experimentally grown under insect-	
0	proof greenhouse conditions	61
8	Effect of chitosan nanoparticles (ChiNPs) used at	
	three methods of applications on <i>Bean yellow mosaic</i>	
	grown under insect-proof greenhouse conditions	72
9	Effect of silver nanoparticles (AgNPs) used at three	, 2
-	methods of applications on <i>Bean yellow mosaic</i> virus	
	infectivity on faba bean plants experimentally grown	
	under insect-proof greenhouse conditions	78
10	Effect of chitosan-silver nanocomposite (Chi-AgNPs)	
	used at three methods of applications on Bean yellow	
	mosaic virus infectivity on faba bean plants	
	experimentally grown under insect-proof greenhouse	Q /
11	Effect of chitosan salicylic acid nanocomposite (Chi	04
11	Enter of entosan-sancyne acid nanocomposite (CIII-	

Table		Page
	SalNP) used at three methods of applications on Bean	
	yellow mosaic virus infectivity on faba bean plants	
	experimentally grown under insect-proof greenhouse	
	conditions.	89
12	Effect of foliar protective application of different prepared nanoparticles on virus concentration in	
	faba bean treated plants at compared to healthy and infected untreated controls using ELISA reaction	97
13	Effect of foliar curative application of different	
	prepared nanoparticles on virus concentration in faba	
	bean treated plants compared to healthy and infected	
	untreated controls using ELISA reaction	101
14	Effect of seed soaking application of different	
	prepared nanoparticles on virus concentration in faba	
	bean treated plants at six tested concentrations	
1 5	compared to healthy and infected untreated controls.	104
15	Effect of seed soaking in combination with foliar	
	application of different prepared nanoparticles on	
	virus concentration in raba bean treated plants at six	
	infected untreated controls using ELISA reaction	
	infected unifeated controls using ELISA feaction.	107
16	Pathogenesis-related gene 1 (PR-1) expression	
	analysis and the fold change modulation in faba	
	bean plants treated with three tested	
	concentrations of AgNPs and ChiNPs compared	
	the untreated control	110
17	Effect of foliar application of chitosan nanoparticles	
	(ChiNPs) and silver nanoparticles (AgNPs) at three	
	different concentrations on phenolic contents in faba	
	bean treated plants compared to untreated control	
	under insect-proof greenhouse condition	115

Table		Page
18	Effect of seed soaking application of synthesized	
	nanomaterials tested at three different concentrations	
	on the phenolic dynamic curve in faba bean plants	
	compared to untreated control under greenhouse	
	conditions	118
19	Phenylalanine ammonia-lyase (PAL) activity in faba	110
	bean plants treated with different concentrations of	
	chitosan nanoparticles (ChiNPs) compared to	
	untreated control under insect-proof greenhouse	
	conditions	121
20	Polyphenol oxidase (PPO) activity in faba bean	
	plants treated with different concentrations of	
	chitosan nanoparticles (ChiNPs) compared to	
	untreated control under insect-proof greenhouse	
	conditions.	124
21	Peroxidase activity in faba bean plants treated with	
	different concentrations of chitosan nanoparticles	
	(ChiNPs) compared to untreated control under insect-	
	proof greenhouse conditions	127
22	Polyphenol oxidase (PPO) activity in faba bean	
	plants treated with different concentrations of silver	
	nanoparticles (AgNPs) compared to untreated control	120
02	under insect-proof greenhouse conditions.	130
23	with different concentrations of silver papoparticles	
	(AgNPs) compared to untreated control under insect-	
	proof greenhouse conditions.	132
24	Phenylalanine ammonia-lyase (PAL) activity in	
	faba bean plants treated with different	
	concentrations of silver nanoparticles (AgNPs)	
	compared to untreated control under insect-proof	10-
	greenhouse conditions	135

25	Activity of chitoson gilver personnegite on some	
20	defense-related enzyme activity in faba bean compared to untreated control under insect-proof greenhouse conditions	138
26	Phenylalanine ammonia-lyase (PAL) activity in faba bean plants treated with different concentrations of chitosan-salicylic acid nanocomposite (Chi-saiNPs) compared to untreated control under insect-proof greenhouse conditions	141
27	Polyphenol oxidase activity in faba bean plants treated with different concentrations of chitosan- salicylic acid nanocomposite (Chi-saiNPs) compared to untreated control under insect-proof greenhouse	
28	conditions Peroxidase activity in faba bean plants treated with different concentrations of chitosan-salicylic acid nanocomposite (Chi-saiNPs) compared to untreated	143
29	control under insect-proof greenhouse conditions Effect of chitosan nanoparticles (ChiNPs) on vegetation parameters of faba bean treated plants with three methods of applications compared to infected and healthy untreated control	144 146
30	Effect of silver nanoparticles (AgNPs) on vegetation parameters of faba bean treated plants with three methods of application compared to infected and healthy untreated control.	148
31	Effect of chitosan-silver nanocomposites (Chi-AgNPs) on vegetation parameters of faba bean treated plants with three methods of application compared to infected and healthy untreated control	151
32	Effect of chitosan-salicylic acid nanoparticles (Chi-SalNPs) on vegetation parameters of faba bean treated plants with three methods of application compared to infected and healthy untreated control.	153

Table		Page
33	Effect of silver nanoparticles (AgNPs) on the virus acquisition and transmission by vector aphids on faba bean plants experimentally grown under insect-proof greenhouse conditions	157
34	Effect of foliar application of different prepared nanoparticles on the vector aphid acquisition and transmission of <i>Bean yellow mosaic virus</i> to faba bean plants.	160
35	Effect of foliar application of tested nanoparticles on <i>Bean yellow mosaic virus</i> (BYMV)- aphid transmission and infectivity response on faba bean sprayed 24 hours before viruliferous aphids infestations under insect-proof greenhouse	100
36	Effect of foliar application of different prepared nanoparticles and composites at two tested concentrations against vector aphid population number on faba bean treated plants experimentally grown under insect-proof greenhouse	163
	conditions	167

LIST OF FIGURES

Figure		Page
1	Schematic diagram of various nanotechnology applications in agricultural sector (Khot et al., 2012; Parsad <i>et al.</i> , 2017a: Abd-Elsalam and Prasad, 2019; Kah <i>et al.</i> , 2019)	7
2	Faba bean cultivated areas in Egypt during the previous seven years in the period between 2013 to 2019 illustrating a sharp decrease in growing faba bean area compared to 2005 growing season (According to the statistical reposts of the Ministry of Agriculture and Land Recommendation of Egypt)	9
3	BYMV geographical distribution worldwide (illustrating by CABI Organization, available at https://www.cabi.org/isc/datasheet/9433)	11
4	Schematic diagram of <i>Bean yellow mosaic virus</i> genome according to the ICTV virus taxonomy profile (Guvat et al., 1996)	16
5	Schematic diagram of formation mechanism concept of silver nanoparticles (AgNPs) obtained by citrate anion as a reducing agent, according to the explanation of Pillai and Kamat (2004)	20
6	A: Schematic diagram of chitosan polymer preparation and structure (Hadwiger and Beckman, 1980). B: Simple illustration of chitosan nanoparticles preparation concept using tripolyphosphate (TPP)-ion gelation method according to Koukaras et al., 2012 and Hoang et al., 2022	22
7	Aphid species used in the research experiments. A: Myzus persicae individuals on faba bean plants. Aphis	
	craccivora on gladiolus (B) and faba bean (C) plants grown under insect-proof greenhouse conditions. Red	
	arrows refer to M. persicae individuals and blue	
	arrows refer to A. craccivora individuals	29

Figure

- 8 Zetasizer, X-Ray Diffraction (XRD) and High resolution -Transmission Electron Microscope (HRinstruments used in TEM) characterization of constructed nanoparticles..... 39
- 9 A: Simple schematic diagram illustrating the estimated part for single faba bean leaflet used in leaf area Chlorophyll meter used in measurement. **B**: determination of faba bean leaf chlorophyll content in both treated and untreated plants in all experiments....
- Bean yellow mosaic virus disease occurrence, 10 isolation and pathogenicity. A: Proportion of Bean vellow mosaic virus and two other plant viruses associated with diseased and symptomatic faba bean plant samples collected during the growing season of 2017 /2018. B: Field symptoms of naturally infected faba plants with other viruses mixed with BYMV infection. C: Symptoms of naturally infected faba bean plants with BYMV in the field illustrating severe mosaic symptoms. **D**: Typical mosaic symptoms of isolated BYMV as a result of artificial inoculation on faba bean plants under insect-proof greenhouse conditions. All samples collected from faba bean plants growing at Giza Research Station, ARC were labeled in the field during all preliminary detection and isolation of BYMV.....
- Bean yellow mosaic virus disease response on some mechanically inoculated legumes and nonlegumes hosts. A, B: Faba bean plants illustrating a stunning and sever mosaic symptoms. C: Bean plant illustrating sever mosaic symptoms. **D:** White lupin plants showing yellow mosaic. E: soybean plants exhibiting vien banding. F: Vigna anguiculata plant showing sever mosaic and malformation. G: Chenopodium amaranticolor illustrating chlorotic local lesions. H: Nicotina rustica plants showing yellowing, mild mosaic and leaf malformation.....

48

Page

11

55

Figure		Pag
12	<i>Bean yellow mosaic virus</i> disease response on some ornamental plants illustrating yellow mosaic on Gladiolus leaves (A) and flower color breaking on gladiolus (B), petunia (C) <i>Pelargonium zonale</i> (D) and <i>Pelargonium peltatum</i> (E)	59
13	<i>Bean yellow mosaic virus</i> disease phenotypic response (A), molecular genotypic characterization (B) and particle morphology conformation confirmation (C). B : Agarose gel electrophoresis of two migrated RT- PCR products illustrating the genotypic identification of BYMV by amplifying the coat protein gene at a molecular weight of 907 bp; Lan 1 : healthy plant control, Lan 2 : BYMV-infected faba bean plant, Lan 3 : Artifally inoculated <i>C. amaranticolor</i> sample., M : 1500 bp DNA ladder. C : Transmission electron microscope micrograph illustrating a typical flexuous filamentous potyvirus particle of isolated BYMV with an average 720 nm in length and 12.62 nm in diameter.	
14	Physico-chemical characterization of synthesized chitosan nanoparticles (ChiNPs). A: Zeta potential measurement showing a positive surface charge withmV. B: Particle size distribution histogram with an average size of 37.84 nm. C: X-ray diffraction (XRD) pattern displaying amorphism nature of chitosan additionally with four typical peaks related to the diffraction planes of silver nanoparticles. D: TEM micrograph illustrating ChiNPs a pseudospherical to spherical shape with 36.52 nm average size	63
15	Silver nanoparticles (AgNPs) physicochemical	05

characterization. A: Zeta potential measurement showing a negative surface charge with -36.5 mV. B: Particle size distribution histogram of AgNPs with an average size of 7.43 nm. C: X-ray diffraction (XRD) pattern displaying four typical peaks related to the diffraction planes of silver nanoparticles. D: HR-TEM micrograph illustrating spherical shape nanoparticles

ge

Figure		Page
	with 8.54 nm average size	66
16	Chitosan-silver nanocomposites (Chi-AgNPs) Physicochemical characterization. A: Particle size distribution histogram with an average size of 45 nm. B: Zeta potential measurement showing a negative surface charge with -20.10 mV. C: X-ray diffraction (XRD) pattern displaying amorphism nature of chitosan additionally with four typical peaks related to the diffraction planes of silver nanoparticles. D: TEM micrograph illustrating Chi-AgNPs a pseudospherical to spherical shape with 43.08 nm average size	68
17	Chitosan-salicylic acid nanoparticles (Chi-SalNPs) physicochemical characterization. A: Particle size distribution histogram with an average size of 48.77 nm. B: Zeta potential measurement showing a positive surface charge with 34.6 mV. C: X-ray diffraction (XRD) pattern displaying amorphism nature of chitosan additionally with typical peaks related to the diffraction planes of salicylic acids. D: TEM micrograph illustrating Chi-SalNPs a pseudospherical to spherical shape with 40.28 nm average size	69
18	<i>Bean yellow mosaic virus</i> disease incidence and severit esponse scored on faba bean plants treated with folia rotective (A) and curative (B) applications of chitosa anoparticles (ChiNPs) at six tested concentrations under nsect-proof greenhouse conditions	73
19	Disease response of <i>Bean yellow mosaic virus</i> scored on faba bean plants treated with foliar application of chitosan nanoparticles (ChiNPs) compare to untreated control plants A,B: Untreated control plants showing a severe mosaic and stunting compared to ChiNPs- treated plants with 400 mg.l ⁻¹ . C: 50 mg.l ⁻¹ treated plants showing severe mosaic. D: 400 mg.l ⁻¹ treated plants with no symptoms	74
20	Bean yellow mosaic virus disease response on faba bean plants treated with seed soaking (A) and in	

Figure		Page
	combination with foliar application (B) of chitosan	
	nanoparticles (ChiNPs) at six tested concentrations	75
	compared to untreated control	15
21	Bean yellow mosaic virus disease incidence and	
	severity response scored on faba bean plants treated	
	with foliar protective (A) and curative (B)	
	applications of silver nanoparticles (AgNPs) at six	
22	tested concentrations	79
22	Disease response of <i>Bean yellow mosaic virus</i> scored	
	on faba bean plants treated with foliar application of	
	silver nanoparticles (AgNPs) compare to untreated	
	control plants. A, B: Untreated control plants	
	showing a severe mosaic and stunting compared to	
	AgNPs-treated plants at 300 mg.l ⁻¹ . C: 50 mg.l-1	
	treated plants showing mild-to-severe mosaic. D: 300	
	mg.l ⁻¹ treated plants showing no symptoms	80
23	Bean yellow mosaic virus disease response on faba	
	bean plants treated with seed soaking (A) and in	
	combination with foliar application (B) of silver	
	nanoparticles (AgNPs) at six tested concentrations	
	compared to untreated control under insect-proof	
	greenhouse conditions	83
24	Bean yellow mosaic virus disease incidence and	
	severity response scored on faba bean plants treated	
	with foliar protective (A) and curative (B) applications	
	of chitosan-silver nanocomposite (Chi-AgNPs) at six tested concentrations	85
25	Bean yellow mosaic virus disease response on faba	00
	bean plants treated with seed soaking (A) and in	
	combination with the foliar application (B) of	
	chitosan-silver nanocomposite (Chi-AgNPs) at six	

XV

Figure		Page
	tested concentrations compared to untreated control	
		86
26	Bean yellow mosaic virus disease incidence and	
	severity response scored on faba bean plants treated	
	with foliar protective (A) and curative (B) applications	
	of chitosan-salicylic acid nanocomposite (Chi-SalNPs)	
	at six tested concentrations	90
27	<i>Bean yellow mosaic virus</i> disease response on faba bean plants treated with seed soaking (A) and in combination with the foliar application (B) of chitosan-salicylic acid nanocomposite (Chi-Sal NPs) at six tested concentrations compared to untreated control	91
28	Transmission electron microscope micrograph from	71
	leaf dip-preparations of BYMV illustrating the direct effect of silver nanoparticles on virus units <i>in vivo</i> . A: AgNPs aggregates and attached to the envelope of virus particles in treated plants compared to untreated control (C), B: AgNPs-healthy treated plants served as a comparable control. Photos were captured under direct mag.:100000 x with scale pare of 100 nm, HV=80.0kV.	93
29	Transmission electron microscope micrograph of BYMV particles unites obtained from chitosan nanoparticles (ChiNPs) treated (B, C, D) and untreated control (A). Red arrows refereeing to the defective viral particles in ChiNPs treated plants compared to untreated control.Photos were captured under direct mag.:100000 x with scale pare of 100 nm, HV=80.0kV.	94
30	Bean yellow mosaic virus scored in faba bean plants	
	treated with foliar protective application of different	
	prepared nanoparticles at six tested concentrations	
	compared to healthy and infected untreated control,	
	expressed as optical density at 405 nm	98

Figure		Page
31	Bean yellow mosaic virus scored in faba bean plants	
	treated with foliar curative application of different	
	prepared nanoparticles at six tested concentrations	
	compared to healthy and infected untreated control,	
	expressed as optical density at 405 nm	102
32	Bean yellow mosaic virus scored in faba bean plants	
	treated with seed soaking application of different	
	prepared nanoparticles at six tested concentrations	
	compared to healthy and infected untreated control,	
	expressed as optical density at 405	
	nm	105
33	Bean yellow mosaic virus scored in faba bean plants	
	treated with seed soaking in combination with foliar	
	application of different prepared nanoparticles at six	
	tested concentrations compared to healthy and infected	
	untreated control, expressed as optical density at 405	
	nm	108
34	Modulation changes in pathogenesis-related gene 1	
	(PR-1) expression and protein patterns in response to	
	silver nanoparticles (AgNPs) foliar application. A, B:	
	Expression pattern analysis of PR-1 of AgNPs over the	
	untreated control. C: Protein patterns illustrating	
	changes in protein accumulations	111
35	Modulation changes in pathogenesis-related gene 1	
	(PR-1) expression and protein patterns in response to	
	chitosan nanoparticles (ChiNPs) foliar application. A,	
	B: Expression pattern analysis of PR-1 of AgNPs over	
	the untreated control. C: Protein patterns illustrating	
	changes in protein accumulations.	113
36	Phenolic contents dynamic curve of faba bean plants	
	treated with foliar application of chitosan nanoparticles	
	(A) and silver nanoparticles (B) at three different	

Figure		Page
	concentrations compared to untreated control	116
37	Phenolic contents dynamic curve of faba bean plants	
	treated with seed soaking application of synthesized	
	nanomaterials at three different concentrations	
	compared to untreated control	119
38	Time course of phenylalanine ammonia-lyase (PAL) activity in faba bean plants treated with different concentrations of chitosan nanoparticles (ChiNPs)	100
20	compared to untreated control	122
39	bean plants treated with different concentrations of chitosan nanoparticles (ChiNPs) compared to	125
4.0	Time course of nerovideos estivity in false hear rients	123
40	treated with different concentrations of chitosan nanoparticles (ChiNPs) compared to untreated control.	127
41	Time course of polyphenol oxidase activity in faba	
	bean plants treated with different concentrations of	
	silver nanoparticles (AgNPs) compared to untreated	
	control	131
42	Time course of peroxidase activity in faba bean plants treated with different concentrations of silver nanoparticles (AgNPs) compared to untreated control	133
43	Time course of phenylalanine ammonia-lyase (PAL) activity in faba bean plants treated with different concentrations of silver nanoparticles (AgNPs) compared to untreated control under insect-proof greenhouse conditions.	136
44	Time course of phenylalanine ammonia-lyase (A),	
	polyphenol oxidase (B) and peroxidase (c) activity in	
	faba bean plants treated with different concentration of	
	chitosan silver nanoparticles (Chi-AgNPs) compared	
	to untreated control under insect-proof greenhouse	
	conditions	139

Figure		Page
45	Time course of phenylalanine ammonia-lyase activity in faba bean plants treated with different concentrations of chitosan-salicylic acid nanocomposite (Chi-salNPs) compared to untreated control	141
46	Time course of polyphenol oxidase activity in faba bean plants treated with different concentrations of chitosan-salicylic acid nanocomposite (Chi-salNPs) compared to untreated control under insect-proof greenhouse conditions	143
47	Time course of peroxidase activity in faba bean plants treated with different concentrations of chitosan- salicylic acid nanocomposite (Chi-salNPs) compared to untreated control under insect-proof greenhouse conditions	144
48	Vegetation parameters of faba bean plants treated with chitosan nanoparticles (ChiNPs) at three methods of applications compared to untreated healthy (C-ve) and infected (C+ve) control plants	147
49	Vegetation parameters of faba bean plants treated with silver nanoparticles (AgNPs) at three methods of applications compared to untreated healthy (C-ve) and infected (C+ve) control plants	149
50	Vegetative parameters of faba bean plants treated with chitosan-silver nanocomposites (Chi-AgNPs) at three methods of applications compared to untreated healthy (C-ve) and infected (C+ve) control plants	152
51	Vegetation parameters of faba bean plants treated with chitosan-salicylic acid nanoparticles (Chi-salNPs) at three methods of applications compared to untreated healthy (C-ve) and infected (C+ve) control plants	154

Figure

52

- Silver nanoparticles (AgNPs) affect Bean yellow mosaic virus (BYMV)-acquisition and transmissibility. A: Effect on the percentage of BYMV-acquisition and transmissibility when vector aphids get contact with AgNPs-treated plants at 1, 5 and 10 days before acquisition assay. B: Gel electrophoresis analysis of RT-PCR coat protein gene product of BYMV in faba bean plants 30 days after acquisition assay, AgNPs treatments were sprayed 24 h pre-acquisition assay (before aphids get in contact with virus-infected plants). Lan1: control, Lan 2,3,4,5,6 and 7 are: 300, 250, 200, 150, 100 and 50 mg⁻l⁻¹ of AgNPs treatments respectively. C: Disease response on faba plants scored 21 days after challenged with aphids at 24 h. D: Proportion of acquisition from AgNPs-treated plants infected with BYMV 24 h before acquisition assay..... 158
- 53 Bean yellow mosaic virus aphid transmission and disease severity response in faba bean plants treated with foliar application of chitosan nanoparticles (ChiNPs) at sex different concentrations compared to untreated control under insect-proof greenhouse conditions. 164
- 54 Effects on the percentage of Bean yellow mosaic virusaphid transmission and disease severity response in faba bean plants treated with foliar applications of chitosan-silver nanoparticles (Chi-AgNPs) compared control.A: percentage of to untreated virus transmission and disease severity. **B**: Gel electrophoresis analysis of RT-PCR coat protein gene product of BYMV in faba bean plants 30 days after virus inoculation with aphids, Lan1: control, Lan 2,3,4,5,6 and 7 are: 400, 300, 250, 200, 100 and 50 mg^{-1} of Chi-AgNPs treatments respectively. C: Disease response scored on treated and untreated plants.....

165

Figure		Page
55	Population dynamic of vector aphid on faba bean plants treated with two tested concentrations of chitosan nanoparticles (ChiNPs), silver nanoparticles (AgNPs), chitosan-silver nanocomposite (Chi-AgNPs) and chitosan-salicylic acid nanocomposite (Chi-Sal NPs) compared to control.	169
56	Aphid population density on faba bean plants treated with two tested concentrations of chitosan nanoparticles (ChiNPs) compared to untreated control under insect-proof greenhouse conditions	169
57	Aphid population density on faba bean plants treated with two tested concentrations of silver nanoparticles (AgNPs) compared to untreated control under insect- proof greenhouse conditions	170
58	Aphid population density on faba bean plants treated with two tested concentrations of chitosan- silver nanoparticles (Chi-AgNPs) compared to untreated control under insect-proof greenhouse conditions	171
59	Aphid population density on faba bean plants treated with two tested concentrations of chitosan- salicylic acid nanoparticles (Chi-SalNPs) compared to untreated control under insect-proof greenhouse conditions	172