COMBINED EFFECT OF NANOPARTICLES AND REFRIGERATED STORAGE ON DATE PALM FRUITS

By

AMAAL ALI ZAINHOUM MAHMOUD

B. Sc. (Pomology), Fac. Agric., Cairo Univ., Egypt, 2010 M. Sc. (Pomology), Fac. Agric., Cairo Univ., Egypt, 2015

THESIS

Submitted In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Pomology)

Department of Pomology Faculty of Agriculture Cairo University Egypt

2021

Name of Candidate: Amaal Ali Zainhoum Mahmoud Degree: Ph.D.

Title of Thesis: Combined effect of nanoparticles and refrigerated

storage on date palm fruits

Supervisors: Dr. Hemat Mohamed Kamal

Dr. Sahar Mohamed Abd El-wahab

Dr. Ezz Gad Alla Al-abbasi

Department: Pomology **Approval:** / 2021

ABSTRACT

Post-harvest loss is one of the biggest problems which effects agricultural economic growth globally. Physical methods like spray of new types of fertilizers using innovative nanotechnology and refrigerated storage are common practices to minimize post-harvest losses in date fruits; these are one of the potentially effective options of significantly enhancing the global agricultural productions needed to meet the future demands of the growing population. During 2018 and 2019 seasons, "Zaghloul" date palm fruits were sprayed three times (at growth start, just after fruit setting and at one month late) with some nanoparticles (zinc oxide, magnetite, selenium, silver and chitosan), in different concentrations (30, 60 and 90 ppm) in order to study the effect of some nanoparticles to improve quality and storability of date palm fruits. The sprayed fruits were harvested at khalal stage and then fruits stored up to 3 months at 0 °C and relative humidity (RH) 90-95% to evaluate quality attributes. Also, all sprayed fruits immersion in gelatin nanoparticles at 2% as a post-harvest coating material to prolonging the storage life and maintaining their fruit quality of sprayed "Zaghloul" date palm fruits during cold storage for 90 days. All treatments were very effective to improving fruit quality in terms on increasing (dimensions, weight, volume, flesh weight, firmness, total soluble solids, total sugars and total anthocyanin) and decreasing (discarded%, weight loss%, total acidity, total soluble tannins and total phenolic content) as compared with the control. Furthermore, the metal concentrations in sprayed fruit with some nanoparticles were found within the permissible limits regulated for health standard. The best result with regard to fruit quality and storability of "Zaghloul" date palms were obtained with spraying ZnONPs at 90 ppm and coated with GNPs at 2%.

Key words: "Zaghloul" date palm- *Phoenix dactylifera* L.- spraynanoparticles- zinc oxid- magnetite- selenium- silver-chitosan- gelatin- refrigerated storage- quality.

CONTENTS

Title	Page
INTRODUCTION	1
REVIEW OF LITERATURE	8
1. Effect of some nanoparticles pre-harvest treatments on	
physical and chemical properties	
a. Effect of nanotechnology in agriculture	16
b. Effect of zinc oxide (ZnO) nanoparticles	10
c. Effect of magnetite (Fe ₃ O ₄) nanoparticles	25
d. Effect of selenium (SeNPs) nanoparticles	30
e. Effect of silver (AgNPs) nanoparticles	33
f. Effect of chitosan (CsNPs) nanoparticles	40
2. Risk assessment of heavy metals accumulation on	46
human health	40
a. Zinc (Zn)	48
b. Iron (Fe)	49
c. Selenium (Se)	50
d. Silver (Ag)	52
e. Chitosan (Cs)	53
3. Effect of post-harvest treatments on maintaining	
quality of fruits	
1. Effect of refrigerated storage post-harvest treatment on	54
physical and chemical properties	34
2. Effect of gelatin nanoparticles post-harvest treatment on	61
physical and chemical properties	01

MATERIALS AND METHODS	. 67
RESULTS AND DISCUSSION	. 85
Experiment (1) pre-harvest treatments	
1. Physical properties	
a. Palm yield and bunch weight	85
b. Fruit dimension.	89
c. Fruit weight	92
d. Fruit volume	93
e. Flesh weight	96
f. Seed Weight	97
g. Flesh Weight (%)	99
h. Seed Weight (%)	100
i. Fruit firmness	100
2. Chemical properties	
a. Total soluble solids	102
b. Total acidity	103
c. Total sugars content	103
d. Total soluble tannins	. 106
e. Total phenolic content	. 106
f. Total anthocyanin content	. 107
3. Risk assessment of heavy metals accumulation in	n
sprayed "Zaghloul" date palm fruits with some	e 110
nanoparticles pre-harvest treatments on human	
health.	
Experiment (2) Post-harvest treatments (A)	
1. Physical Characteristics	114

a. Discarded	114
b. Weight loss	118
c. Fruit firmness	122
2. Chemical characteristics	
a. Total soluble solids	125
b. Total acidity	128
c. Total sugars content	131
d. Total soluble tannins	134
e. Total phenolic content	136
f. Total anthocyanin content	139
Experimental (2) section (B)	
1. Physical Characteristics	
a. Discarded	142
b. Weight loss	146
c. Fruit firmness	150
2. Chemical Characteristics	
a. Total soluble solids	154
b. Total acidity	158
c. Total sugars content	163
d. Total soluble tannins	167
e. Total phenolic content	171
f. Total anthocyanin content	175
SUMMARY	179
CONCLUSION	201
REFERENCES	202
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1.	Effect of some nanoparticles pre-harvest treatments on palm yield and bunch weight of "Zaghloul" date palm fruits during 2018 and 2019 seasons	88
2.	Effect of some nanoparticles pre-harvest treatments on length and diameter of "Zaghloul" date palm fruits during 2018 and 2019 seasons	91
3.	Effect of some nanoparticles pre-harvest treatments on fruit weight and fruit volume of "Zaghloul" date palm fruits during 2018 and 2019 seasons.	95
4.	Effect of some nanoparticles pre-harvest treatments on flesh weight and seed weight of "Zaghloul" date palm fruits during 2018 and 2019 seasons	98
5.	Effect of some nanoparticles pre-harvest treatments on flesh weight, seed weight and fruit firmness of "Zaghloul" date palm fruits during 2018 and 2019 seasons	101
6.	Effect of some nanoparticles pre-harvest treatments on total soluble solids, total acidity and total sugars of "Zaghloul" date palm fruits during 2018 and 2019 seasons	105
7.	Effect of some nanoparticles pre-harvest treatments on total soluble tannins, total phenolic content and total anthocyanin content of "Zaghloul" date palm fruits during 2018 and 2019 seasons	109
8.	Metal mean in sprayed "Zaghloul" date palm fruits with some nanoparticles, DIM and HRI for adults and children	113

9.	Effect of some nanoparticles pre-harvest treatments and storage period on discarded (%) of "Zaghloul" date palm fruits during cold storage at 0°C in 2018 and 2019 seasons	117
10.	Effect of some nanoparticles pre-harvest treatments and storage period on weight loss (%) of "Zaghloul" date palm fruits during cold storage at 0°C in 2018 and 2019 seasons	121
11.	Effect of some nanoparticles pre-harvest treatments and storage period on fruit firmness (Lb/inch²) of "Zaghloul" date palm fruits during cold storage at 0°C in 2018 and 2019 seasons	124
12.	Effect of some nanoparticles pre-harvest treatments and storage period on total soluble solids in (°Brix) of "Zaghloul" date palm fruits during cold storage at 0°C in 2018 and 2019 seasons	127
13.	Effect of some nanoparticles pre-harvest treatments and storage period on total acidity (%) of "Zaghloul" date palm fruits during cold storage at 0°C in 2018 and 2019 seasons	130
14.	Effect of some nanoparticles pre-harvest treatments and storage period on total sugars content (g/ 100g FW) of "Zaghloul" date palm fruits during cold storage at 0°C in 2018 and 2019 seasons	133
15.	Effect of some nanoparticles pre-harvest treatments and storage period on total soluble tannins (mg/ 100g FW) of "Zaghloul" date palm fruits during cold storage at 0°C in 2018 and 2019 seasons	135
16.	Effect of some nanoparticles pre-harvest treatments and storage period on total phenolic content (mg/ 100g FW) of "Zaghloul" date palm fruits during cold storage at 0°C in 2018 and 2019 seasons	138

17.	and storage period on total anthocyanin content (mg/100 g FW) of "Zaghloul" date palm fruits during cold storage at 0°C in 2018 and 2019 seasons	141
18.	Effect of some nanoparticles pre-harvest treatments and covering with gelatin nanoparticles 2% on discarded (%) of "Zaghloul" date palm fruits during cold storage at 0°C in 2018 season	144
19.	Effect of some nanoparticles pre-harvest treatments and covering with gelatin nanoparticles 2% on discarded (%) of "Zaghloul" date palm fruits during cold storage at 0°C in 2019 season	145
20.	Effect of some nanoparticles pre-harvest treatments and covering with gelatin nanoparticles 2% on weight loss (%) of "Zaghloul" date palm fruits during cold storage at 0°C in 2018 season	148
21.	Effect of some nanoparticles pre-harvest treatments and covering with gelatin nanoparticles 2% on weight loss (%) of "Zaghloul" date palm fruits during cold storage at 0°C in 2019 season	149
22.	Effect of some nanoparticles pre-harvest treatments and covering with gelatin nanoparticles 2% on fruit firmness (Lb/inch²) of "Zaghloul" date palm fruits during cold storage at 0°C in 2018 season	152
23.	Effect of some nanoparticles pre-harvest treatments and covering with gelatin nanoparticles 2% on fruit firmness (Lb/inch²) of "Zaghloul" date palm fruits during cold storage at 0°C in 2019 season	153
24.	Effect of some nanoparticles pre-harvest treatments and covering with gelatin nanoparticles 2% on total soluble solids in (°Brix) of "Zaghloul" date palm fruits during cold storage at 0°C in 2018 season	156

25.	Effect of some nanoparticles pre-harvest treatments and covering with gelatin nanoparticles 2% on total soluble solids in (°Brix) of "Zaghloul" date palm fruits during cold storage at 0°C in 2019 season	157
26.	Effect of some nanoparticles pre-harvest treatments and covering with gelatin nanoparticles 2% on total acidity (%) of "Zaghloul" date palm fruits during cold storage at 0°C in 2018 season	161
27.	Effect of some nanoparticles pre-harvest treatments and covering with gelatin nanoparticles 2% on total acidity (%) of "Zaghloul" date palm fruits during cold storage at 0°C in 2019 season	162
28.	Effect of some nanoparticles pre-harvest treatments and covering with gelatin nanoparticles 2% on total sugars content (g/ 100g FW) of "Zaghloul" date palm fruits during cold storage at 0°C in 2018 season	165
29.	Effect of some nanoparticles pre-harvest treatments and covering with gelatin nanoparticles 2% on total sugars content (g/ 100g FW) of "Zaghloul" date palm fruits during cold storage at 0°C in 2019 season	166
30	Effect of some nanoparticles pre-harvest treatments and covering with gelatin nanoparticles 2% on total soluble tannins (mg/ 100g FW) of "Zaghloul" date palm fruits during cold storage at 0°C in 2018 season	169
31	Effect of some nanoparticles pre-harvest treatments and covering with gelatin nanoparticles 2% on total soluble tannins (mg/ 100g FW) of "Zaghloul" date palm fruits during cold storage at 0°C in 2019 season	170

32	Effect of some nanoparticles pre-harvest treatments and covering with gelatin nanoparticles 2% on total phenolic content (mg/100 g FW) of "Zaghloul" date palm fruits during cold storage at 0°C in 2018 season	173
33	Effect of some nanoparticles pre-harvest treatments and covering with gelatin nanoparticles 2% on total phenolic content (mg/100g FW) of "Zaghloul" date palm fruits during cold storage at 0°C in 2019 season	174
34	Effect of some nanoparticles pre-harvest treatments and covering with gelatin nanoparticles 2% on total anthocyanin content (mg/100 g FW) of "Zaghloul" date palm fruits during cold storage at 0°C in 2018 season	177
35	Effect of some nanoparticles pre-harvest treatments and covering with gelatin nanoparticles 2% on total anthocyanin content (mg/100g FW) of "Zaghloul" date palm fruits during cold storage at 0°C in 2019	178

List of Abbreviations

Abbreviation Explanation

NPs Nanoparticles

Zn Zinc

ZnO Zinc oxid

Fe Iron

Fe₃O₄ Magnetite

Se Selenium

Ag Silver

Cs Chitosan

G Gelatin

DIM Daily intake of metals

HRI Health risk index

 C_{metal} Concentration of the metal

 C_{factor} Conversion factor

D_{food intake} Daily intake of food

Baverage wight Average body weight

Rfd Reference oral dose

ppm Parts per million

RH Relative humidity

kJ Kilojoules