BIOCHEMICAL STUDIES ON EGYPTIAN COTTON STALK LIGNIN AND LIGNIN NANOPARTICLES AS ANTIMICROBIAL, ANTIOXIDANT AND ANTICANCER AGENTS

BY

SHAIMAA EL SAYED AHMED MOHAMMED

B.Sc. Agric. Sci. (Biotechnology), Fac. Agric., Cairo Univ. 2002 M.Sc. Agric. Sci. (Agricultural Biochemistry), Fac. Agric., Cairo Univ. 2013

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Agricultural Biochemistry)

Department of Agricultural Biochemistry Faculty of Agriculture Cairo University EGYPT

2022

Formate Reviewer

Vice Dean of Graduate studies

Name of condidate: Shaimaa El Sayed Ahmed Mohammed Degree:Ph.D. Title of thesis: Biochemical Studies On Egyptian Cotton Stalk Lignin And Lignin Nanoparticles As Antimicrobial, Antioxidant And Anticancer Agents Supervisors: Dr. Nadia Mohammed Abd El-Moein

Dr. Eman Ahmed Hanafy Dr. Amal Saber Mohamed **Department:** Agricultural Biochemistry

Branch:

Approval: / / 2022

ABSTRACT

The aim of the current investigation is converting cotton plant stalks into lignin and lignin nanoparticles, then applying them to produce antimicrobial textile (using 7 pathogenic bacteria and 5 pathogenic fungi), and also studying their antioxidant and anticancer activity. Stalks of two cultivars; Giza 86, and Giza 90 were obtained from Cotton Research Institute experimental fields and be used in this study. Lignin was extracted from stalks by using two methods (one via organic acids and the other was alkaline treatment), and converting it into lignin nanoparticles by using ultra sonication procedure. The first stage, chemical analysis comparison, as economical assessment indicators, was conducted. The results showed that, Giza 86 excelled Giza 90 significantly in lignin amount; enclosed between 306 and 1770 kg/fed. Lignin extracted by alkaline treatment elevates organic acids method by 37.93% in amount. The second stage was the lignin and lignin nanoparticles identification. Organic acids method, gave higher negative zeta potential (about -30.2 to -41.7 mV for Giza 90 and Giza 86, respectively) than alkaline treatment. TEM images confirmed that, ultrasonication procedure succeded for transforming the large, heterogenized and agglomerated form of lignin particles to small, uniform size and smooth surfaces and regular spherical lignin nanoparticles. FTIR spectra characteristic bands enclosed in a range from 494 to 3907 cm⁻¹, where all samples have bands in common. Lignin nano particles has some new bands, whereas, some other bands disappeared. Some bands characterized alkali solvent lignin, whereas, some others bannered the organo solve lignin. The third stage was testing lignin (normal and nano particles size) bioactivities; the antimicrobial, antioxidant and anticancer. L90 and LNP90 as the best samples has antibacterial effect and also, they had the best antifungal effect with OL86 and OLNP86. Innovative technology; lignin and lignin nano particles treatment to surgical bandages to confront pathogens, was submitted to the Egyptian patent office with a submition number of 981/2020. Inhibition ratio, as antioxidant indicator, had positive association with lignin concentration. Extraction methods, as well as, used cultivars exhibited significant differences for inhibition ratio (%). Estimated IC₅₀ values coincides inhibition ratio (%) values. Giza 90 lignin Giza 90 lignin nanoparticles extracted by organic acids method was selected as the best antioxidant sample to continue further invistigation as anticancer. No cytotoxicity effect was detected for sampled lignin on normal skin cell; line BJ1, whereas, lignin in nanostate exhibits nearly twice the lethal effect on human skin cancer cell; line A431, than lignin in natural state because of its small size, which led to its ability to penetrate the cancer cell more than natural lignin.

Key words: cotton stalk, lignin, nanoparticles, antimicrobial, antioxidant, zeta potential, TEM, FTIR, textile, skin cancer.

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	5
1. Cotton and Cotton stalks (CS); composition and applications	5
2. Lignin; biosynthesis, types, extractions and uses	7
3. Lignin nano-particles (LNP); preparation and uses	18
4. Antioxidant lignin; causes and applications	21
5. Antimicrobial lignin; causes, importance's and uses	26
6. Anticancer lignin; nano particles and applications	30
MATERIALS AND METHODS	37
1. Raw material	37
2. Source of chemicals	37
3. Cotton Cultivation	37
4. Cotton stalk samples preparation	39
5. Proximate analysis	40
6. Lignin extraction	44
a. Lignin extraction by alkali modified steam explosion process	44
b. Organosolv lignin extraction by organic acids	45
7. The gain production of extracted lignin from the two cultivars.	46
8. Preparation of lignin nanoparticles	47
9. Lignin and lignin nanoparticles characterization	47
10. Lignin (normal and nano particle) bioactivities	48
11. Application of lignin and lignin nanoparticles on textiles	54
12. Statistical analysis	54

RESULTS AND DISCUSSION	55
1. Proximate analysis	55
2. The gain product of the two cultivars in Egypt	55
a. Weight and moisture content	60
C C	60
b. Lignin amount estimation	62
3. Lignin and lignin nanoparticles colours	67
4. Lignin and lignin nanoparticles characterization	70
a. Particle size distribution analysis	70
b. Zeta potential distribution	71
c. Transmission Electron Microscopy (TEM)	74
d. Fourier Transform Infrared Spectroscopy (FTIR)	80
4. Lignin and lignin nanoparticles bioactivities	86
a. Antioxidant activity	86
b. Antimicrobial activity	91
(1) Disc diffusion technique	91
(2) Determination of minimum inhibitory concentration (MIC) against understudied fungi and bacteria	100
c. Anticancer activity; Cytotoxic effect on human normal and Skin cancer cell line	105
5. Lignin and lignin nanoparticles application on textile	110
CONCLUSION	121
ENGLISH SUMMARY	123
REFERENCES	131
ARABIC SUMMARY	

LIST OF TABLES

NO.	Title	Page
1.	Proximate analysis for cotton stalk of the two understudied cultivars; Giza 86 and Giza 90	58
2.	Cotton stalk weight (fresh and dry) and Moisture content	38
	(%) for the two cultivars; Giza86 and Giza 90	60
3.	Extracted lignin(%), extraction method efficiency(%), lignin amount (g) for the two cultivar axis, cotton stalk lignin amount (kg/fed), and its calculated weight (ton) for its Egyptian cultivated area in season 2021	63
4	Particle size(nm) and Zeta potential (mV) for lignin and	05
	nano lignin	69
5.	Assignment of FTIR spectra of cotton stalk lignin and lignin nanoparticles.	83
6.	Inhibition ratio (%) and IC ₅₀ as indicators to antioxidant	85
0.	activity for lignin and lignin nanoparticles of Giza 86 and	
	90 cultivars	88
7.	Antifungal activity of lignin (alkalisolv and organosolv) and lignin nanoparticles against different fungal strains by	
	disc diffusion method	94
8.	Antibacterial effect of lignin (Alkalisolve and organosolv) and lignin nanoparticles on bacterial strains by disc	
_	diffusion method	99
9.	Minimum inhibitory concentration (MIC mg/mL) of lignin and lignin nanoparticles against pathogenic	
	fungi	101
10.	Minimum inhibitory concentration (MIC mg/mL) of lignin	
	and lignin nanoparticles against pathogenic bacteria	104
11.	Anticancer activity for natural lignin and lignin	
	nanoparticles at 100 ppm against human normal and cancer skin cells	106
12.	Antifungal activity of lignin and lignin nanoparticles of the	100
	innovative textile against pathogenic fungi	112
13.	Antibacterial activity of lignin and lignin nanoparticles of	
	the innovative textile against pathogenic bacteria	117

LIST OF FIGURES

NO.	Title	Page
1.	Cytotoxic effect on human normal and Skin cancer cell line	53
2.	Proximate analysis for cotton stalk of the two understudied cultivars; Giza 86 and Giza 90	59
3.	Continued proximate analysis continued for cotton stalk of the two understudied cultivars; Giza 86 and Giza 90	59
4.	The moisture content (%) and weights (g) of Egyptian cotton stalk cultivars; Giza 86 and Giza 90 before and	
	after drying	61
5.	Lignin yield (%) by using modified steam explosion and organic acids solvents procedures for Giza 86 and Giza 90 and the extraction methode efficiency(%) of cotton	
	stalk	64
6.	The quantity of lignin (g/plant) by using modified steam	
	explosion and organic acids solvents procedures for Giza	
-	86 and Giza 90.	64
7.	Extracted Lignin yield (Kg/Fed.) for Giza 86 and Giza 90 Cultivars by using modified steam explosion and organic	
	acids solvents procedures	65
8.	Lignin weight (1000 ton)/ Egyptian cultivated area in	05
0.	season 2021 by using modified steam explosion and	
	organic acids solvents procedures	65
9.	Extracted L86(a) and LNP86(b) colours	68
10.	Extracted OL86(c) and OLNP86(d) colours	68
11.	Extracted L90(e) and LNP90(f) colours	69
12.	Extracted OL90(g) and LNP90(h) colours.	69
13.	Size distribution by number of L86 (a) and LNP86 (b).	72
14.	Size distribution by number of OL86 (a) and OLNP86	72
15.	(b) Size distribution by number of L90 (a) and LNP90	72
16.	Size distribution by number of OL90 (a) and OLNP90	, 2
	(b)	73

17.	Zeta potential of LNP86 (a) and LNP90 (b)	73
18.	Zeta potential of OLNP86 (a) and OLNP90 (b)	74
19.	Electron micrographs of LNP86 (a) and L86(b)	76
20.	Electron micrographs of LNP90 (a) and L90 (b)	77
21.	Electron micrographs of OLNP86 (a) and OL86 (b)	78
22.	Electron micrographs of OLNP90 (a) and OL90 (b)	79
23.	FT-IR spectra of L86 (a) and LNP86 (b)	82
24.	FT-IR spectra of L90 (a) and LNP90 (b)	82
25.	FT-IR spectra of OL86 (a) and OLNP86 (b)	83
26.	FT-IR spectra of OL90 (a) and OLNP90 (b)	83
27.	Suggested mode of action for organosolv lignin and	
	lignin nanoparticles as antioxidant agents	90
28.	Probit transformed responses curve	107
29.	Effect of OL90 on skin cancer cell; line A431, where	
	sample concentration range at 100 ppm untreated skin	
	cancer cell; line A431 (a), OL90 (b) and OLNP90 (c)	108
30.	Effect of OL90 and OLNP90 on normal cell; line	
	BJ1.Normal cell; line BJ1(a), OL90 (b) and OLNP90 (c).	109
31.	Innovative textile test to pathogenic fungi inhibition	
51.	zone	113
32.	Continued innovative textile test to pathogenic fungi	110
02.	inhibition zone	114
33.	Innovative textile test to pathogenic bacteria inhibition	
	zone	118
34.	Continued bacteria	119
		/