THE ABILITY OF SOME SELECTED ISOLATES OF *Trichoderma* spp. TO IMPROVE SEED VIABILITY AND PLANT HEALTH THROUGH SEED TREATMENTS

By

HEBA HAMDI HAMMAD AFIFI

B.Sc. Agric. Sc. (Plant pathology), Ain Shamus University, 2005 M.Sc. Agric. Sc. (Sustainable Agriculture), Mediterranean Agronomic Institute of Chania, Greece, 2010

A Thesis Submitted in Partial Fulfillment Of The Requirement for the Degree of

DOCTOR OF PHILOSOPHY

in

Agriculture Sciences (Biotechnology and Food Safety in Arid Regions)

Department of Biotechnology and Food Safety in Arid Regions Arid Land Agricultural Graduate Studies and Research Institute Ain Shams University

2022

ABSTRACT

Heba Hamdi Hammad Afifi: The Ability of some Selected Isolates of *Trichoderma* spp. to Improve Seed Viability and Plant Health through Seed Treatments, Unpublished Ph.D. Thesis, Department of Biotechnology and Food Safety in Arid Regions, Arid Land Agricultural Graduate Studies and Research Institute (ALARI), Ain Shams University, 2022.

Among ninety eight Trichoderma isolates obtained from plant rhizosphere soil of sixteen governorates in Egypt, and conserved seeds. Nine isolates were highly performed against high temperature, salinity and drought stresses under *in vitro* conditions and pot experiments. Also, they showed their ability as biological phytopathogenic control agents against the fungi Fusarium oxysporum and Rhizoctonia solani through the dual culture technique with more than 85% inhibition. The nine isolates were phenotypically characterized and identified by specific species primers which confirmed their species as five isolates of Trichoderma harzianum, three isolates of Trichoderma viride, and one isolate of Trichoderma virens. The isolates NGB-T14, NGB-T20 and NGB-T33 were able to grow at ±45°C in *in vitro*, and the NGB-T14, NGB-T16, NGB-T17 and NGB-T18 isolates showed a significant salinity tolerance up to 2M. While the NGB-T59, NGB-T86 and NGB-T90 were grown in 30% PEG for drought tolerance. The *ex vivo* pot treatments under abiotic stresses with selected isolates were tested individually and showed an enhancement in morphological and biochemical traits compared with the untreated seeds. In determination of the biochemical traits, proline and chlorophyll were significantly increased under severe abiotic stresses. T. harzianum (NGB T14) alleviated the heat stress on plants to survive under $\pm 40^{\circ}$ C. Moreover, T. harzianum (NGB-T14) gave the best profile in high salinity levels

that can reach 12 dSm⁻¹. The isolate *T. viride* (NGB-T59) was the best in drought tolerance. These observations may be of use to phytosanitary services for growers and agricultural researchers under the arid land for sustainable utilization.

Key Words: Abiotic stresses, Seed treatments, *Trichoderma* sp., Biofertlizer, Proline detection and Genotypic Identification.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VI
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1 Overview on genus Trichoderma	4
2.1.1 Trichoderma spp. ecological niche & importance	4
2.1.2 Trichoderma spp. isolation	5
2.1.3 Trichoderma spp. preservation	6
2.2 Trichoderma spp. phenotypic characterization	7
2.2.1 Trichoderma morphology	7
2.2.2 Potentiality of <i>Trichoderma</i> as biological control agent	8
(BCA)	
2.2.3 Environmental factors effects on Trichoderma spp.	9
2.3 Genotypic identification of Trichoderma spp.	10
2.4 Trichoderma spp. applications and treatments	11
2.5 <i>Trichoderma</i> spp. and growth promoting plant interactions	12
2.6 Trichoderma spp. role in tolerance against abiotic stresses	14
3. MATERIAL AND METHODS	16
3.1 Samples sources collection and locations	16
3.2 Isolation of <i>Trichoderma</i> spp.	19
3.2.1 Sterilization and precautions	19
3.2.2 Isolation from rhizosphere soil	19
3.2.3 Isolation from seeds:	20
3.3 Long preservation and maintenance of purified	20
Trichoderma isolates	
3.4 Identification of Trichoderma isolates	21
3.4.1 Phenotypic characterization	21
3.4.2 Growth rate	21

3.4.3 Duel culture technique (Antagonism efficiency)	
3.5 Screening for Abiotic stress tolerance of Trichoderma	22
selected isolates	
3.5.1 Temperature tolerance	22
3.5.2 Salinity tolerance	22
3.5.3 Drought tolerance	23
3.6 Cluster analysis	23
3.7 Microscopic examination and measurements	23
3.8 Identification keys	24
3.9 Molecular characterization	24
3.9.1 Extraction of Genomic DNA of Trichoderma selected	24
isolates	
3.9.2 Species- specific PCR	25
3.9.3 DNA Reagents	26
3.10 pot experiments under abiotic stresses	26
3.10.1 Selected isolates	27
3.10.2 <i>Trichoderma</i> application	27
3.10.3 Soil preparation and Cultivations	28
3.10.3.1 Soil preparation for testing the heat effect	28
3.10.3.2 Soil preparation for testing the salinity effect	28
3.10.3.3 Soil preparation for testing the drought effect	29
3.10.4 Morphological and yield components	29
3.10.5 Chemical analysis	30
3.10.5.1 Estimation of Protein, Carbohydrate and Ash	30
percentages	
3.10.5.2 Determination of Chlorophyll A, Chlorophyll B and	30
Carotenes	
3.10.5.3 Determination of Proline	31
3.11 Statistical analysis and procedures	31
4. RESULT AND DISCUSSION	33
4.1 Distribution and Germplasm collection of Trichoderma	34
4.2 Phenotypic characterization	37

4.2.1 Trichoderma cultural characteristics	37
4.2.2 Growth rate/colony radius	47
4.2.3 Growth Inhibition In- vitro (Dual Culture Technique)	50
4.3 Screening for Abiotic stress tolerance of Trichoderma	57
selected isolates	
4.3.1 Temperature Effect on <i>Trichoderma</i> isolates	57
4.3.2 Salinity Effect on <i>Trichoderma</i> isolates	60
4.3.3 Drought Effect on Trichoderma isolates	63
4.4 Grouping based on phenotypic characterization cluster	66
analysis	
4.5 Identification and Selection of <i>Trichoderma</i> isolates, based	69
on Abiotic stresses screening in vitro	
4.6 Identification using species-specific primers	72
4.7 Pot Experiments	74
4.7.1 Heat Effect Evaluation	74
4.7.2 Salinity Effect evaluation	79
4.7.3 Drought effect evaluation	85
5. SUMMARY	91
5.1 The phenotypic studies of <i>Trichoderma</i> isolates	91
5.2 The Genotypic studies of <i>Trichoderma</i> isolates	92
5.3 The pot experiments under abiotic stresses	92
5.4 Conclusion	93
6. REFERENCES	95

LIST OF TABLES

No.	Title	Page
1	List of Trichoderma isolation sites	17
2	List of the National Gene Banks accession numbers, types	18
	and sources of seeds.	
3	List of known Trichoderma species, obtained from Plant	19
	Pathology Institute, Egypt.	
4	List of species-specific primers for Trichoderma spp.	26
5	List of purified cultures of Trichoderma isolates, number of	34
	isolates and source	
6	Morphological characters of Trichoderma isolates grown	39
	on potato dextrose agar for 96 hours at 26°C.	
7	Linear growth of Trichoderma isolates grown on PDA	48
	plates after 96 hours incubation at 26°C.	
8	Cumulative daily Growth rate of Trichoderma isolates	49
	grown on PDA plates for 96 hours at 26°C.	
9	Radial mycelia growth of Rhizoctonia solani with	53
	percentage of growth inhibition by <i>Trichoderma</i> isolates	
	grown on PDA plates for 96 hours at 26°C.	
10	Radial mycelia growth of Fusarium oxysporum with	55
	percentage of growth inhibition by <i>Trichoderma</i> isolates	
	grown on PDA plates for 96 hours at 26°C.	
11	Linear growth average of Trichoderma isolates grown on	58
	PDA plates after 96 hours incubation at 15, 35 and 45° C.	
12	Linear growth average of Trichoderma isolates grown on	61
	PDA plates after 96 hours incubation at 25° C under 0.5 M,	
	1.5M and 2M conditions.	
13	Linear growth of Trichoderma isolates grown on PDA	64
	plates after 96 hours incubation at 25° C under 10%, 20%	
	and 30% PEG conditions.	
14	Similarity cluster percentage and isolates distribution based	67
	on phenotypic characterization.	

- 15 List of the selected isolates based on abiotic stresses and 70 phenotypic characterization.
- 16 Estimation of the wheat plants morphological traits under 77 heat condition using the selected *Trichoderma* isolates.
- 17 Estimation of the wheat plants biochemical traits under heat 78 condition using the selected *Trichoderma* isolates.
- 18 Estimation of the wheat plants morphological traits under 82 salt condition using the selected *Trichoderma* isolates.
- 19 Estimation of the wheat plants biochemical traits under salt 83 condition using the selected *Trichoderma* isolates.
- 20 Estimation of the wheat plants morphological traits under 88 drought condition using the selected *Trichoderma* isolates.
- 21 Estimation of the wheat plants biochemical traits under 89 drought condition using the selected Trichoderma isolates.

LIST OF FIGURES

No.	Title	Page
1	Satellite image of <i>Trichoderma</i> map of soil collected sites of Egypt.	16
2	Satellite image represent the number of isolated <i>Trichoderma</i> isolates according to the governorate distribution of Egypt.	36
3	Cultural shapes of Trichoderma spp.	38
4	The dual culture technique between (A) <i>Trichoderma</i> isolate NGB-T16 with <i>Rhizoctonia solani</i> and (C) with <i>Fusarium oxysporium</i> after 5 days of incubation at 25°C	52
5	<i>Trichoderma</i> isolate NGB- T20 full growth in (A) after 4 days of incubation at 25 °C while (B) portrayed the white mycelium growth with no green sporulation of the same isolate after 7 days incubation at 45 °C.	60
6	<i>Trichoderma</i> isolate NGB- T18 full growth in (A) after 4 days of incubation at 25 °C while (B) portrayed the white mycelium growth with no green sporulation of the same isolate after 8 days incubation in 2M saled medium.	63
7	<i>Trichoderma</i> isolate NGB- T59 full growth in (A) after 4 days of incubation at 25 °C while (B) portrayed the white mycelium growth with no green sporulation of the same isolate after 7 days incubation in 30% PEG medium.	66
8	Dendrogram showing the similarities among all <i>Trichoderma</i> isolates based on phenotypic characterization	68
9	Light microscope images (25 X) represent the early stages of <i>Trichoderma</i> spp. Growth at 25 after 24 h in A which portrayed the very beginning of branching ,while B after 48 h showed the beginning of conidiophore formation and C after 72 hours showed the clamdyospore presences and the	71

hayphal volume and thickness increasement .

- 10 The extracted genomic DNA of Trichoderma selected 73 isolates
- 11 PCR products using species specific primers for *T*. 73 *harziunum* in A, *T. virid*e in B and *T. virens* in C.
- Heat pot experiments at °30C, 35°C and 40 °C respectively 79 treated with NGB-T14 (A), NGB-T 20 (B) and NGB-T33 (C), while (D) the untreated control under same temperature degrees and (E) the treated control without heat stress.
- 13 Salinity pot experiments in 4dSm-1, 8dSm-1 and 12 dSm-1 respectively treated with NGB-T14 (A), NGB-T 16 (B) and NGB- T17 (C), while (D) the untreated control under same salinity level and (E) the treated control without salinity stress.
- 14 Drought pot experiments in 4%, 8% and 16% PEG 90 respectively treated with NGB- T59 (A), NGB- T86 (B) and NGB-T90 (C), while (D) the untreated control under same drought level and (E) the treated control without drought stress