

Faculty of Veterinary Medicine Department of Bacteriology, Mycology and Immunology

Pathogenic bacterial diversity regarding the acquired antimicrobial resistance in integrated fish farm

Thesis Presented by

Maha Azmy Mahmoud Sacran

(B. V. Sc., Fac. Vet. Med., Cairo University, Beni-Suef branch 1994)(M. V. Sc., Fac. Vet. Med., Beni-Suef University 2013)

For fulfillment of Degree of Ph.D.in Veterinary Medical Sciences (Bacteriology, Mycology and Immunology) Under Supervision of

Prof. Dr Walid Hamdy Hassan.

Head and Professor of Bacteriology, Mycology and Immunology, Fac. Vet. Med., Beni-Suef University

Dr. Mortada Mohamed Abdel-Hamed Hussein

Head and Associate Prof. of Fish Diseases and Management, Fac. Vet. Med., Beni-Suef University

Prof. Dr. Alaa Eldin Abdel Moaty Eissa

Head and Professor of Aquatic Animal Medicine and Management, Fac. Vet. Med., Cairo University.

Dr. Soad Sabry Abd-El- Halem

Senior Researcher in Fish Diseases Department, Animal Health Research Institute in Dokki.ARC.

[2022]

Abstract

A study was conducted to investigate bacterial pathogens associated with diseases outbreaks in African catfish, C. gariepinus, raised in earthen pond aquaculture system with special concern with these which showed AMR. Emphasis on detection AMR on traditional and molecular levels was in concern. Additionally, pathogenicity and median lethal dose LD₅₀ of selected bacterial species was elaborated. Alternative antimicrobial agent was tested against the selected pathogens together with its biological tolerance in fish model. Two hundred fifty diseased catfish were collected from different localities at Fayoum Governorate during the period from October 2016 to October 2019. In parallel, samples from poultry droplets fertilizers and poultry carcasses and chicken slaughter house byproducts used as fish feed were collected. After clinical and postmortem examinations, samples from kidneys, livers and external lesions from fish were subjected to bacteriological isolation. At the same time, bacterial isolation was performed from poultry collected samples. The isolated bacteria (total 116, fish 99, poultry 17 isolates) were identified on basis on morphological, conventional biochemical tests and confirmed by, API® 20 E, API® 20 NE, API® 20 Strep. The most prevalent bacterial isolates isolated from fish were belonged to Aeromonads species 28 (35.7%), however Entrococci was the most prevalent ones isolated from poultry. Summer was the highest prevalence season associated with bacterial isolation (49.1%), while kidneys were the highest isolation site. A part from Aeromonads and Entrococci. other bacterial species including Shewanella SDD.. Pseudomonads, Vibrios and Staphylococcus were also obtained. I/P injection of A. hydrophila BNS 0119 at dose 0.1 ml containing 3×10^8 , 1.5×10^8 , $1.5 \ge 10^7$, $1.5 \ge 10^6$, and $1.5 \ge 10^5$ CFU/ml, showed cumulative mortality rates 50% with LD₅₀ of 1.5x 10⁷. Conventional Antibiogram assays showed variable resistance levels of the tested pathogens to antibiotics tested, however, A. hydrophila BNS 0119 showed acquisition of resistance tetracycline genes on molecular level tested. Production and control of fish health safely together with living in harmony with the nature, natural substances considered as an important area for future developments in aquaculture. Regarding the obtained results, Trivir[®] at high doses of 1000, 500, 250 µg/ml could be used as antimicrobial disinfectant for utensils used in fish farms, however, low doses (125, 64, 32µg/ml) could be used in vivo (fish) as a bacteriostatic antiseptic agent, particularly, during farm operational processes.

Key words: Integrated fish farming, Catfish (*C. gariepinus*), AMR, fish bacterial pathogen, Carvacrol.

Contents

Item	Page
1. INTRODUCTION	1
AIM OF THE WORK	3
2. REVIEW OF LITERATURES	4
1. <u>Clinical signs and postmortem of fish infected with</u>	4
<u>pathogenic bacteri</u> a	
2. Isolation of fish pathogenic bacteria	7
2.1. Isolation of Gram-negative bacteria incriminated in fish diseases outbreaks.	8
2. 1. 1. Aeromonads	9
2.1.2. Shewanella putrefaciens	11
2.1.3. Pseudomonad	11
2.1.4. Vibrio.	12
2.2. Isolation of Gram-positive bacteria incriminated in fish diseases outbreaks.	13
2.2.1. Enterococcus faecalis	12
2.2.2. S. aureus.	13
3. Identification of fish pathogenic bacteria	13
3.1. Biochemical Identification	13

3.2. Molecular identification	14
3.2.1. Genotypic identification	14
J.2.1. Genotypic Menuncation	17
3.2.2. Detection of virulence genes Genotypic identification	17
	. –
4. <u>Pathogenicity of fish bacterial pathogens</u>	17
5. <u>Prevalence</u>	17
5.1 Gram negative bacteria	17
5.1.1. Aeromonads	17
5.1.2. Pseudomonads	20
5.1.3. V. parahaemolyticus.	21 21
5.1.4. Sh. Putrefaciens.	21
5.2. Gram positive bacteria 5.2.1. <i>Enterococcus faecalis</i>	22
2.2.2. S. aureus	
3. <u>Integrated farming</u>	23
7. <u>Antibiogram</u>	23
8. <u>Alternative antibacterial agents of herbal origin</u> .	26

3. MATERIALS AND METHODS	28
3.1. Materials	
3.1.1. Fishes samples	28
3. 1.1.1. Surveyed fishes	20
3.1.1.1.1. C. gariepinus	
3.1.1.2. <u>Experimental fish</u>	29
3.1.1.2. (A). Experimental fish models used for	31
bioassay tolerace of Trivir [®] (carvacrol 10%) as alternative	51
antimicrobial agent	
2112 (D) Figh wood for Antificial infaction	
3.1.1.2. (B). Fish used for Artificial infection	30
with selected pathogenic bacteria	
	20
3.1.1.3. <u>Fish holding facilities</u>	30
3.1.2. Chicken.	30
3.1. 3. Aquaria	30
5.1. 5. Aquana	50
3.1.4. Media	
3.1.5. Chemicals, Stains and reagents used for bacteriological	30
examination	32
	33
3.1.6. Other chemicals used	33
3.1.7. Apparatuses	
	33
3.1.8. Stains	33
3.1.9. Glasses and plastics	34
3.1.10. Other instruments used	34
	_
3.1.11. Antibiotics discs used for Antibiogram diffusion assay	34

3.1.12. Materials used for genotypic characterization for	34
investigation of the isolates for presence of some	
<u>virulence genes.</u>	35
3.1.12.1. Chemicals, reagents	55
3.1.12.2. Oligonucleotide primer	35
3.1.12.3. Equipment's used for PCR Assays	36
3.1.12.4. Kits used in the study	
3.1.13. Trivir [®] , patent alterative antisepectic agent of herbal <u>natural origin</u>	36
3.2. Methods	37
3.2.1. Clinical and post-mortem examinations	
3 3.2.2. Phenotypic characterization of bacterial pathogens from diseased fish	27
from diseased fish	37 37
3.2.2.1. Morphological characters of the colonies	37
3.2.2.2. Microscopic examination	39
3.2.2.3. Detection of motility	39
3.2.2.4. Biochemical characterization	39
3.2.2.4.1. Oxidase test	39
3.2.2.4.2. Catalase test	39
5.1.2.7.2. Catalase test	39
3.2.2.4.3. Sugar fermentation test	
3.2.2.4.4. Indole production test	39
3.2.2.4.5. Biochemical identification with API	43
system	
3.2.3. <u>Pathogenisity.</u>	
3.2.3.1. In vitro determination of haemolytic activity as a	
virulence factor for selected A. hydrophila isolate	

3.2.3.2. In vivo determination of selected A. hydrophila (BNS 0119) pathogenicity according to Austin and Austin 212	43 43
3. 2. 4. <u>Antibiogram</u>	44
 3.2.5. <u>Detection of antibiotic resistance determinants genes of</u> <u>A. hydrophila BNS 0119</u> 3.2.5.1. DNA extraction from the isolates 	45
3.2.5.2. DNA amplification	45
3.2.5.3. Agarose gel electrophoresis for visualization of PCR products	46
3.2.6. <u>Investigation of Trivir[®] (carvacrol 10%) as an antibiotic</u> <u>alternative for controlling bacterial infection in</u>	46
<u>African catfish</u> 3.2.6.1. <i>In vitro</i> antibacterial activity of Trivir [®] against selected bacterial isolates	46
3.2.6. 2. Trivir [®] bactericidal activity	47
3.2.6.3. Bioassay tolerance of the experimental fish model (<i>C. gariepinus</i>) against Trivir [®]	48

4. RESULTS 4.1. <u>Clinical findings and post-mortem examination in the</u>	49
examined. fishes 4.2. <u>phenotypic characterization</u> 4.2.1. Colonial morphological characteristics	50
4.2.2. Biochemical characterization for isolates	52
4. 3. Identification by API [®] 20 E, API [®] 20 NE and API [®] 20	52
Strep 4.4. <u>Prevalence, Seasonal incidence and Frequency distribution</u> of bacterial isolates recovered from different organs of cultured infected fish.	54
4.5. <u>Pathogenicity of selected A. hydrophila BNS 0119 in C.</u>	57
<i>gariepinus</i> as experimental fish model.	
4. 6. <u>Antibiogram test of selected pathogenic isolates using agar</u> <u>diffusion method</u>	
4.7. <u>Molecular detection of antibacterial resistance genes of</u> selected A. <i>hydrophila</i> BNS 0119 by Polymerase chain reaction	62
(PCR) 4.8. <u>Bacteriostatic activity of Trivir[®]</u>	63
4.9. <u>Bactericidal activity of Trivir®</u>	63
4.10. <u>Bio-assay tolerance test</u>	64
5.DISCUSSION	66-78
6. SUMMARY	79-83
7. REFERANCES	84-114
8. ARABIC SUMMARY	

List of Tables

No.	Title	Page
1	Selected fish species with different localities during three seasons	29
2	Oligonucleotide primer sequences of OTC determinants used in this study.	35
3	Colonial morphology of some Gram-negative and Gram- positive bacteria on different laboratory media.	38
4	Biochemical identification of the suspected bacterial Gram- Negative bacterial isolates.	41
5	Biochemical identification of the suspected Gram positive bacterial isolates.	42
6	PCR protocol regime for amplification of OTC antibacterial determinants genes	46
7	Prevalence, Seasonal incidence and Frequency distribution of bacterial isolates recovered from different organs of cultured infected Catfish	54
8	Survival rate among fish groups challenged with different concentrations of <i>A. hydrophila</i> BNS 0119.	57
9	Disc Antibiogram assay of pathogenic bacteria.	61
10	Bacteriostatic effects of the prepared Triver solution on the selected pathogenic bacterial strains of fish.	63
11	Bactericidal effects of the prepared Triver solution on the selected pathogenic bacterial strains of fish.	64
12	Bio-assay tolerance and mortality rates of <i>C. gariepinus</i> exposed to different concentrations of Trivir® at different times of exposure.	65

List of Figures

No.	Title	Page
1	Prevalence of isolated bacterial spp. from <i>C</i> . <i>gariepinus</i> and poultry.	55
2	Prevalence of isolated bacterial from different organs.	56
3	Total prevalence of bacterial pathogens isolated from naturally <i>C. gariepinus</i>	56
4	Survival rates associated with artificial infection of <i>C. gariepinus with A.hydrophila</i>	58

List of Photos plates

No.	Title	Page
1	External clinical alterations associated with clinically diseased <i>C. gariepinus</i> .	49
2	Internal clinical alterations associated with clinically diseased <i>C. gariepinus</i>	50
3	Colonial appearance on different selected media used for isolation of bacteria.	51
4	Identification of some isolated bacterial pathogens isolated from naturally infected catfish using API [®] 20 E, API [®] 20 NE and API [®] 20	53
5	External clinical signs of <i>C. gariepinus</i> artificially infected with <i>A. hydrophila</i> BNS 0119	59
6	Post-mortem lesions of artificially infected <i>C</i> . <i>gariepinus with A. hydrophila</i> BNS 0119.	60
Photo 1.	Agarose gel Electrophoresis of amplified <i>tet</i> (A-C) and <i>dhfr</i> 1 genes detected in <i>A. hydrophila</i> BNS 0119 conventional PCR assay	62

i

List of Abbreviations

A. hydrophila	Aeromonas hydrophila
ABM	Aeromonas base medium
A. salmonicida	Aeromonas salmonicida
API 20E	Analytical profile index 20E
BP medium	Baird-Parker medium
BHIB	Brain heart infusion broth
Chry.indolegens	Chrysobacterium. Indolegens
C. gariepinus	Clarias gariepinus
DNA	Deoxyribonucleic acid
E. faecalis	Enterococcus faecalis
E. coli	Escherichia coli
FAO	Food and Agriculture Organization
H_2O_2	Hydrogèn peroxide
H_2S	Hydrogen sulfide
I/P	Intraperitoneal
MAC medium	MacConkey medium
LD ₅₀	median lethal dose
MR	Methyl red
MR-VP	Methyl red Voges-Proskauer
MIC	minimum inhibitory concentration

O. niloticus	Oreochromis niloticus
O. Milolicus OTC	Oxytetracycline
PBS	Phosphate Buffer Saline
	-
PCR	Polymerase chain reaction
P. aeruginosa	Pseudomonas aeruginosa
P. fluorescens	Pseudomonas fluorescens
rRNA	Ribosomal ribonucleic acid
SS agar	Salmonella-Shigella agar
Sh.putrifaciens	Shewenella.putrifaciens
Spp.	Species
S. aureus	Staphylococcus aureus
TCBS medium	Thiosulphate citrate bile salt sucrose medium
TSA	Tryptone soya agar
TSB	Tryptone soya broth
USA	United States of America
V. anguillarum	Vibrio anguillarum
V. cholera	Vibrio cholera
<i>V</i> .	Vibrio parahaemolyticus
parahaemmmolyticus	
VP	Voges–Proskauer
CFU	Colony forming unit
FAO	Food and Agriculture Organization