Kafrelsheikh University Faculty of Veterinary Medicine Food Control Department

Using of natural antimicrobials for improving the hygienic

status of fermented dairy products

Thesis presented by

Asmaa Mustafa Ismail Abou Zied

B. V. Sc., Fac. Vet. Med., Kafrelsheikh Univ, (2010)

M. V. Sc., Fac. Vet. Med., Kafrelsheikh Univ, (2015)

Under Supervision of

Dr. Ibrahim Ibrahim AL–Hawary

Dr. Azza Marghani Mohamed Deeb Professor of Milk Hygiene

Faculty of Veterinary Medicine Kafrelsheikh University

Dean of Faculty of Aquatic and Fisheries Sciences

Professor of Milk Hygiene

Kafrelsheikh University

Dr. Walaa Mohamed Elkassas

Senior Researcher of Food Hygiene, Animal Health

Research Institute (Kafr El-Sheikh branch)

Submitted to

Fac. Vet. Med., Kafrelsheikh Univ.

Food Control Department

(Milk Hygiene)

For obtaining Ph.D. degree in Veterinary Medical Sciences

(2022)

List of Contents		
Title	Page No.	
1- INTRODUCTION	1	
2- REVIEW OF LITERATURESSSNS	5	
3-MATERIALS AND METHODS	35	
4-RESULTS	48	
5-DISCUSSION	56	
6- CONCLUSION AND RECOMMENDATIONS.	66	
7- SUMMARY	68	
8-REFERENCES	71	
9-ARABIC SUMMARY	4-1	

LIST OF TABLES

Table No.	Title	Page No.
I	Components of PCR Master Mix.	39 40
Π	Cycling conditions of the different primers during PCR.	40
III	Oligonucleotide primers sequences (Metabion, Germany).	40
IV	Interpretation of Oxiadation - Fermintation test of <i>E. coli</i> .	44
1	Statistical analytical results of staphylococcus count (CFU/g) of the examined fermented dairy products.	48
2	Incidence of <i>S. aureus</i> in the examined fermented dairy products.	48
3	Statistical analytical results of coliforms count (MPN/g) in the examined fermented dairy products.	49
4	Frequency distribution of coliforms count in the examined fermented dairy products.	50
5	Incidence of <i>E. coli</i> in the examined fermented dairy products.	50
6	Serological identification of the isolated <i>E. coli</i> from the examined fermented dairy products.	51
7	Percentage of compatible and incompatible examined samples with the Egyptian Standards	51
8	Hydrolytic activity of lysozyme.	52

LIST OF FIGURES AND PHOTO

Figure		Page
No.	Title	No.
1	Changes in pH values in yoghurt batches	52
	inoculated with S. aureus during refrigerated	
	storage (4°c).	
2	Changes in pH values in yoghurt batches	53
	inoculated with E. coli during refrigerated storage	
	(4°c).	
3	Behaviour of S. aureus in yoghurt batches during	54
	refrigerated storage (4°c).	
4	Behaviour of E. coli in yoghurt batches during	55
	refrigerated storage (4°c).	
Photo 1	Agarose gel electrophoresis of PCR amplified of	49
	S. aureus clfA gene	

3

7-Summary

A total of 100 samples of kariesh cheese and balady yoghurt (50 samples each) were randomly collected from different localities in Kafr El-Sheikh city, Egypt. All samples were transferred to the laboratory in an insulated ice-box with minimum of delay.

1. <u>Bacteriological evaluation:</u>

1.1. <u>Staphylococcal count:</u>

Staphylococci were detected in 48 (96%) and 40 (80%) of examined kariesh cheese and yoghurt samples with mean values of $5.4 \times 10^4 \pm 1.5 \times 10^4$ CFU/g and $2.4 \times 10^3 \pm 0.13 \times 10^3$ CFU/g, respectively.

S. aureus was detected in 5 (10%) and 2 (4%) of the examined kariesh cheese and yoghurt samples, respectively. The virulence factor (*clf*A) of 638 pb was detected in one isolate of *S. aureus* which isolated from yoghurt samples.

1.2. Total coliforms count:

Coliforms were detected in all examined kariesh cheese samples, with mean value of $3.2 \times 10^7 \pm 1.9 \times 10^7$ MPN/g. Whereas 45 (90%) of the examined yoghurt samples were positive for coliforms, with an average of $3.6 \times 10^5 \pm 2.4 \times 10^5$ MPN/g.

The highest frequency distribution of coliforms in the examined kariesh cheese samples was 44% which lied within the interval $10^3 - 10^5$ MPN/g. While, the highest frequency distribution of the examined yoghurt samples (36%) lied within 3 - $< 10^3$ MPN/g

E. coli was isolated from 10 (20%) and 7 (14%) of examined kariesh cheese and yoghurt samples, respectively. The isolated *E. coli*

strains were serotyped to O146:H5 (2,2), O111:H2 (2,2), O111:H5 (2 from kariesh cheese), O125:H11 (1 from yoghurt), O114:H2 (1 from kariesh cheese), O26:H10 (1 from yoghurt), O1:H2 (1 from kariesh cheese), O158:H7 (1 from yoghurt), O119:H7 (1 from kariesh cheese) and O166:H2 (1 from kariesh cheese).

2. Effect of natural antibacterial agents on survival of *S. aureus* and *E. coli* in manufactured yoghurt:

The capacity of antibacterial activities of natural preservatives like lysozyme (native and heated lysozyme), probiotics or their mixtures to inhibit the growth of both food-borne pathogens (*S. aureus* and *E. coli*) in manufactured yoghurt.

Yoghurt batches (1, 2, 3, 4, 5, & 6) which contain:

batch 1: LAB classic starter cultures. batch 2: LAB classic starter + LZ. batch 3: LAB classic starter + HLZ. batch 4: ABT-5 culture.

batch 5: ABT-5 culture+ LZ. batch 6: ABT-5 culture + HLZ.

Every batch was doubled, one inoculated with *S. aureus* and the other inoculated with *E. coli* at the rate of 7.39 and 8.3 log 10 CFU/g, respectively.

2.1. pH value:

The pH values in yoghurt batches (1, 2, 3, 4, 5 & 6) inoculated by *S. aureus* and *E. coli* were gradually decreased as the storage period extend from an initial values at termination of fermentation (curd time) 5.61, 5.48, 5.03, 5.26, 5.38 and 5.43 to 4.00, 3.83, 3.30, 3.44, 3.65 and 3.70 at the day 14th of storage period (4 °c), respectively, for yoghurt batches inoculated by *S. aureus*. While, yoghurt batches inoculated by *E. coli*, pH values were

5.34, 5.21, 5, 5.02, 5.12 and 5.2 initially and decreased to 3.92, 3.64, 3.40, 3.48, 3.61 and 3.63 at the end of storage period, respectively.

2.2. <u>Antibacterial activity:</u>

2.2.1. <u>S. aureus:</u>

The viable counts of *S. aureus* in all manufactured yoghurt batches decreased as the storage period extended. The counts decreased from the inoculation count (7.39 log 10 CFU/g) to 5.73, 4.76, 2.92 and 3.2 log 10 CFU/g in batches (1, 2, 5& 6). Whereas, *S. aureus* growth couldn't be detected in yoghurt batches (3 & 4) on the 14th day of refrigerated storage.

2.3. <u>E. coli:</u>

In all manufactured yoghurt batches, the viable counts of *E. coli* decreased during the refrigerated storage period from the initial count (8.3 log 10 CFU/g) to 5, 4.49, 2.07, 2.77 and 3.41 log 10 CFU/g in batches (1, 2, 4, 5& 6). However, *E. coli* growth was not detected at day 14^{th} of refrigerated storage only in batch 3.