Beni-Suef University Faculty of Veterinary Medicine Department of Bacteriology, Mycology and Immunology

Molecular and conventional bacteriological techniques for identification of some bacterial pathogens associated with swollen head syndrome in broilers

<u>A Thesis</u>

Presented by

Shaza Zein-Elabdeen Mohammed Abdul-Aziz

(M.V.Sc.degree of Bacteriology, Mycology and Immunology Fac. Vet. Med. Beni-Suef University, 2016) For the degree of Ph.D. (Bacteriology, Mycology and Immunology)

Under supervision of

Prof.Dr. Ahmed Hussein Abed

Professor of Bacteriology, Mycology and Immunology Faculty of Veterinary Medicine Beni-Suef University

Cheif.Researcher.Khaled Ahmed

Shokier

Animal Health Research Institute, Beni-Suef Laboratory, Agricultural Research Center, Egypt.

(2022)

List of Contents

Title	Page
List of Abbreviations	Ι
List of Figures	II
List of Tables	IV
Introduction	1
Review of Literature	10
Materials and Methods	63
Results	87
Discussion	118
Conclusion and Recommendations	142
Summary	143
References	147
الملخص العربي	2-1

List of abbreviations

SHS	Swollen head syndrome
AMC	Amoxycillin/Clavulanic acid
APEC	Avian pathogenic Escherichia coli
ATM	Aztreonam
CAZ	Ceftazidime
CIP	Ciprofloxacin
CLSI	Clinical laboratory standardized index
CN	Gentamycin
CR	Congo Red
CRO	Ceftriaxone
СТ	Colistin sulphate
CTX	Cefotaxime
DNA	Deoxy Nucleic Acid.
DO	Doxycycline
DW	Distilled Water
E. coli	Escherichia Coli
ExPEC	Extra intestinal pathogenic <i>E.coli</i>
FEP	Cefepime
FOX	Cefoxitin
G	Grams
GLU	Glucose.
H_2S	Hydrogen Sulfide.
HA	Haemagglutination
HCL	Hydrochloric acid.
IND	Indole.
INT.	Integron
MDR	Multiple Drug Resistant
MR	Methyl Red
Mg	Milligrame.
No.	Number
PBS	Phosphate Bffered Saline
PCR	Polymerase Chain Reaction.
PD	Pullorum disease
Spp	Species
SXT	Sulphamethoxazole/Trimethoprime
TSI	Triple Sugar Iron
VP	Voges Proskaeur
AR	Antimicrobial resistance

List of Figures

Figure NO.	Figures	Page
(1)	PM examination showing swollen head; accumulation of serous fluid in the infra-orbital sinuses and submandibular edema, in broiler chicken	87
(2)	Results of bacteriological examination of samples collected from broiler chickens with swollen head syndrome	88
(3)	Mixed infection between <i>E.coli</i> & <i>Salmonella</i> on TSA agar medium pale & pink colonies on Macconkey agar medium	91
(4)	green metallic shine on EMB agar medium pale &pink colonies on macConkey agar medium	91
(5)	Mixed infection between <i>E.coli</i> & <i>Salmonella</i> from the same sample	93
(6)	Prevalence of different bacterial isolates from swollen head broiler chickens	93
(7)	Prevalence of different bacterial isolates from swollen head broiler chickens	94
(8)	Serogroups of <i>E. coli</i> recovered from swollen head broiler chickens	95
(9)	Antimicrobial susceptibility profile of <i>E.coli</i> isolates recovered from broiler chickens with swollen head syndrome	98
(10)	Antimicrobial susceptibility profile of pseudomonas isolates recovered from broiler chickens suffered from swollen head syndrome	100
(11)	Antimicrobial	102
(12)	Antimicrobial susceptibility profile of salmonella isolates recovered from broiler chickens with swollen head syndrome	104
(13)	PCR amplification of the 576bp and 433bp fragments of <i>tetA</i> (A) and sull resistance genes	108
(14)	PCR amplification of the 113bp and 516bp fragments of <i>aac</i> (6')- <i>Ib-cr</i> and <i>qnr</i> A resistance genes	108
(15)	PCR amplification of the 516bp fragments of qnrA resistance	112

	genes from seven <i>E. coli</i> , four <i>pseudomonas</i> , two <i>Salmonella</i> and	
	two klebsiella isolates	
(16)	PCR amplification of the 469 bp fragments of <i>qnr</i> B resistance genes from seven <i>E. coli</i> , four <i>Pseudomonas</i> , two <i>Salmonella</i> and two <i>klebsiella</i> isolates	112
(17)	PCR amplification of the 392 bp fragments of <i>bla</i> SHV resistance genes from seven <i>E. coli</i> , four <i>Pseudomonas</i> , two <i>Salmonella</i> and two <i>klebsiella</i> isolates	113
(18)	PCR amplification of the 516 bp fragments of <i>bla</i> TEM resistance genes from seven <i>E. coli</i> , four <i>Pseudomonas</i> , two <i>Salmonella</i> and two <i>klebsiella</i> isolates	113
(19)	PCR amplification of the 576 bp fragments of <i>tet</i> (A) resistance genes from seven <i>E. coli</i> , four <i>Pseudomonas</i> , two <i>Salmonella</i> and two <i>klebsiella</i> isolates	114
(20)	PCR amplification of the 266bp and 279bp fragments of <i>iss</i> and <i>chu</i> A virulence genes	114
(21)	PCR amplification of the 638bp and 152bp fragments of <i>CFAI</i> and <i>TspE4C2</i> pathotyping genes	115
(22)	PCR amplification of the 686bp, 528bp and 875bp fragments of <i>arr</i> , <i>ecfx</i> and <i>phz</i> M virulence gene	115
(23)	PCR amplification of the 637bp fragments of <i>mexR</i> virulence genes, from four pseudomonas isolates	116
(24)	PCR amplification of the 396bp fragments of <i>toxA</i> virulence genes, from four <i>Pseudomonas</i> isolates	116
(25)	PCR amplification of the 1113bp, 164bp, 1052bp, 150bp and 700bp fragments of <i>adrA</i> , <i>fimH</i> , <i>ompA</i> , <i>hilA</i> and <i>pefA</i> virulence genes, from two <i>Salmonella</i> isolates	117
(26)	PCR amplification of the 535bp, 508bp and 300bp fragments of <i>rmpA</i> , <i>fimH</i> and <i>iutA</i> virulence genes, from two <i>Klebsiella</i> isolates	117

List of Tables

Table NO.	Table	page
(1)	Oligonucleotide primers sequences	72
(2)	Interpretation of zones of growth inhibition for antimicrobial susceptibility for <i>E.coli</i> , <i>Salmonella</i> and <i>Klebsiella</i>	82
(3)	Preparation of PCR Master Mix according to Emerald <i>Amp</i> GT PCR mastermix (Takara) Code No. RR310A kit	84
(4)	Cycling conditions of the different primers during cPCR	85
(5)	Results of bacteriological examination of samples collected from broiler chickens with swollen head syndrome	88
(6)	Identification of Gram negative bacterial isolates from swollen head broiler chickens	90
(7)	Prevalence of different bacterial isolates from swollen head broiler chickens	92
(8)	Prevalence of different bacterial isolates from swollen head broiler chickens	93
(9)	Serogroups of <i>E. coli</i> recovered from swollen head broiler chickens	94
(10)	Antimicrobial susceptibility profile of <i>E.coli</i> isolates recovered from broiler chickens suffered from swollen head syndrome	97
(11)	Antimicrobial susceptibility profile of <i>Pseudomonas</i> isolates recovered from broiler chickens suffered from swollen head syndrome	99
(12)	Antimicrobial susceptibility profile of <i>Klebsiella</i> isolates recovered from broiler chickens suffered from swollen head syndrome	101

(13)	Antimicrobial susceptibility profile of <i>Salmonella</i> isolates recovered from broiler chickens suffered from swollen head syndrome	103
(14)	Distribution of resistance and virulence- associated genes in the examined <i>E. coli</i> isolates	105
(15)	Prevalence of resistance, virulence-associated and pathotyping genes in the examined <i>E. coli</i> isolates	106
(16)	Distribution of resistance and virulence- associated genes	107
(17)	Prevalence of resistance and virulence-associated genes in the examined <i>Pseudomonas</i> isolates	107
(18)	Distribution of resistance and virulence- associated genes in the examined <i>Klebsiella</i> isolates	109
(19)	Prevalence of resistance and virulence-associated genes in the examined <i>Klebsiella</i> isolates	110
(20)	Distribution of resistance and virulence- associated genes in the examined <i>Salmonella</i> isolates	111
(21)	Prevalence of resistance and virulence-associated genes in the examined <i>Salmonella</i> isolates	111

Summery

Swollen head syndrome is considered to be an important avian disease in various countries. This syndrome has caused considerable losses in the avian industry because it is responsible for mortality of 3to 4% of the birds and for reduction of 2 to 3 % at the egg production. In the present study, the prevalence of swollen head syndrome was studied in 500 broiler chickens, of which 100 were suffering from swollen head syndrome with an incidence of 200%. Identification of the causative bacterial agents was conducted focusing on E. coli, pseudomonas, klebsiella and Salmonellae isolates. The bacteriological examination revealed that out of 100 samples, 92 bacterial isolates were recovered (92%), of which 72 samples (72%) had single bacterial isolates while 20 samples (20%) had mixed two bacterial isolates. Among the recovered isolates, E. coli was the most prevalent isolate (n=80; 71.4%) followed by *Pseudomonas* (n=24; 21.4%), *Salmonella* spp. (n=4; 3.6%) and *Klebsiella* species (n=4; 3.6%). Antibiogram of E. coli isolates showed high sensitivity against fosfomycine while they were highly resistant to the other antimicrobials. Pseudomonas isolates showed a high sensitivity against aztreonam while they were highly resistant to the other antimicrobials. Also, *Klebsiella* isolates showed a high sensitivity against fosfomycine while they were highly resistant to the other antimicrobials. Meanwhile, Salmonella isolates showed high sensitivity to aztreonam while they were highly resistant to the other antimicrobials. All bacterial isolates in this study (E. coli, Pseudomonas, Klebsiella and Salmonellae isolates) showed MDR for three or more antimicrobials of different categories. PCR was applied on 7 MDR E. coli isolates to detect 5 resistance-associated genes (qnrA (0%), qnrB (0%), blaTEM (100%), blaSHV (28.6%) and TetA(A) (100%)), Also 2 virulence-associated genes (*iss* (100%) and CFAI (0%)) and pathotyping genes (*chu*A (100%) and *Tsp*E4C2 (57.14%)). PCR was applied on 4 MDR *Pseudomonas* isolates to detect 5 resistance-associated genes (*qnr*A (0%), *qnr*B (0%), *bla*TEM (100%), *bla*SHV(0%) and *Tet*A(A) (100%)), 5 virulence-associated genes (*mex*R (100%), *arr* (50%), *tox*A (100%), *phz*M (0%) and *ecf*X (100%)). PCR was applied on 2 MDR *klebsiella* isolates to detect 5 resistance-associated genes (*qnr*A (0%), *qnr*B (0%), *bla*TEM (100%), *bla*SHV (50%) and *Tet*A(A) (100%)), 3 virulence-associated genes (*iut*A (100%), *fim*H and *rmp*A were 0%). PCR was applied on 2 MDR *salmonella* isolates to detect 5 resistance-associated genes (*qnr*A and *qnr*B were 0%, *bla*TEM (100%), *bla*SHV and *Tet*A (A) (100%)), 5 virulence-associated genes (*pef*A (0%), *hil*A (100%), *omp*A (100%), *fim*H (0%) and *adr*A (100%)).

In conclusion, the data of the present study showed that new serovars of Salmonella were recovered from poultry. These *Salmonella* serovars were found to harbor many virulence encoding genes. These serovars expressed variable degrees of resistance to antibiotics and this requires regular monitoring of the isolated *Salmonella* for their antimicrobial susceptibility especially that of zoonotic importance.