

Antimicrobial Properties of some Bioactive Compounds and their uses in some Dairy Products

A Thesis Presented by

Asmaa Atef Mohammed Abd Ellah

(B.V. SC., Vet. Med. Suez Canal University, 2011) (M.V. Sc., Vet. Med. Suez Canal University, 2017)

For

The degree of Ph.D. of Veterinary Sciences Hygiene and Control of Milk and Milk products.

Supervised by

Prof. Dr. Ahmed Hassan Saad

Professor of Milk Hygiene and Control Faculty of Veterinary Medicine Suez University

Prof. Dr. Ehab Mohammed Salama

Prof. of Milk Hygiene and Control Dean of Faculty of Veterinary Medicine Al-Arish University

Prof. Dr. Amany Mahmoud Shalaby

Head researcher of food Hygiene Animal Health Research Institute Port Said Branch

Dr. Alaa Abdou Helmy

Lecturer of Milk Hygiene and Control Faculty of Veterinary Medicine Suez University

Thesis Submitted to Faculty of Veterinary Medicine Suez Canal University (2022)

Abstract

This study investigated the antibacterial effect of probiotic strains (*bifidobacterium bifidium* and *lactis*) and essential oils (dill and moringa) on some pathogenic bacteria including *Staphylococcus aureus*, *E. coli* and *Salmonella typhimurium* in yoghurt and soft cheese during the storage period at $4\pm1^{\circ}$ C.Traditional yoghurt, Bifidobifidium yoghurt, Bifidolactis yoghurt and Mixed yoghurt samples were manufactured and inoculated with 10^{4} cfu/g *Staphylococcus aureus*, *E. coli* and *Salmonella typhimurium*. The inoculated bacterial count and the titratable acidity were determined in the prepared yoghurt samples at zero, 3^{rd} , 5^{th} , 7^{th} and 14^{th} day of cold storage. The obtained results revealed elevation in the titratable acidity and noticeable inhibition in the count of the inoculated bacteria during the storage period of prepared yoghurt samples at $4\pm1^{\circ}$ C.

Plain cheese and cheese with *bifidobacterium bifidium*, dill oil and moringa oil were prepared and inoculated with 10^3 cfu/ml pathogenic bacteria and stored for 10 days at 4°C. Samples were taken at zero time, 2^{nd} , 4^{th} , 6^{th} , 8^{th} and 10^{th} days of storage for sensory evaluation and bacterial count. The probiotic cheese had the highest score in the sensory evaluation. The microbiological results showed inhibition in the *Staphylococcus aureus* count at the 6^{th} and 8^{th} days of storage in cheese fortified with dill and moringa E.Os and with probiotic, respectively. At the 10^{th} day of storage *E. coli* was not detected in probiotic cheese and *Salmonella typhimurium* was not detected in dill and probiotic cheese samples.

Contents

1 Introduction	1
2 Literatures Review	7
3 Materials and Methods	37
4 Results	43
5 Discussion	64
6 Conclusion & Recommendation	83
7 Summary	86
8 References	91
9 Arabic Summery	

List of Tables

No.	Table description	Page
1	Statistical analytical results of Staphylococcus aureus	
	count/g of the treated yoghurt samples throughout the	40
	storage period	
2	Reduction % of Staphylococcus aureus count during the	42
	storage period of treated yoghurt samples	42
3	Titratable acidity of treated yoghurt samples inoculated	13
3	by Staphylococcus aureus throughout the storage period.	43
4	Statistical analytical results of E. coli count/g of the	11
	treated yoghurt samples throughout the storage period.	
5	Reduction % of E. coli count during the storage period of	45
5	treated yoghurt samples.	43
6	Titratable acidity of treated yoghurt samples inoculated	46
0	by E. coli throughout the storage period.	40
	Statistical analytical results of Salmonella typhimurium	
7	count/g of the treated yoghurt samples throughout the	47
	storage period.	
8	Reduction % of Salmonella typhimurium count during	48
0	the storage period of treated yoghurt samples	-10
	Titratable acidity of treated yoghurt samples inoculated	
9	by Salmonella typhimurium throughout the storage	49
	period	
10	Sensory evaluation of treated cheese samples throughout	50
10	storage period.	50
	Statistical analytical results of Staphylococcus aureus	
11	count/g of the treated cheese samples throughout the	52
	storage period.	
12	Reduction % of Staphylococcus aureus count during the	54
12	storage period of treated cheese samples.	54
13	Statistical analytical results of E. coli count/g of the	55
13	treated cheese samples throughout the storage period.	55
14	Reduction % of E. coli count during the storage period of	57
17	treated cheese samples.	57
15	Statistical analytical results of Salmonella typhimurium	
	count/g of the treated cheese samples throughout the	58
	storage period.	
16	Reduction % of Salmonella typhimurium count during	60
	the storage period of treated cheese samples	00

List of Figures

No.	Figure description	Page
1	Statistical analytical results of Staphylococcus aureus count/g of the treated yoghurt samples throughout the storage period	41
2	Titratable acidity of treated yoghurt samples inoculated by Staphylococcus aureus throughout the storage period.	43
3	Statistical analytical results of E. coli count/g of the treated yoghurt samples throughout the storage period.	44
4	Titratable acidity of treated yoghurt samples inoculated by E. coli throughout the storage period.	46
5	Statistical analytical results of Salmonella typhimurium count/g of the treated yoghurt samples throughout the storage period.	47
6	Titratable acidity of treated yoghurt samples inoculated by Salmonella typhimurium throughout the storage period.	49
7	Sensory evaluation of treated cheese samples throughout storage period.	51
8	Statistical analytical results of Staphylococcus aureus count/g of the treated cheese samples throughout the storage period.	53
9	Statistical analytical results of E. coli count/g of the treated cheese samples throughout the storage period.	56
10	Statistical analytical results of Salmonella typhimurium count/g of the treated cheese samples throughout the storage period.	59

List of Abbreviations

Abb.	Referring to
ANOVA	Analysis of variance
APHA	American public health association
BHI	Brain heart infusion
LAB	Lactic Acid Bacteria
L.bulgaricus	Lactobacillus delbrueckii subspp. bulgaricus
S.thermophilus	Streptococcus Salivarius subspp. thermophilus
B.bifidium	Bifidobacterium bifidum
B.lactis	Bifidobacterium lactis
E.coli	Escherichia coli
E.Os	Essential oils
FDA	Food and drug administration
gm	Gram
UHT milk	Ultra- Heat Temperature full fat milk
HACCP	Hazard Analysis and Critical Control Point
hrs	Hours
AOAC	Association of Official Analytical Chemist
CFU	Colony forming unit
ISO	International Organization for Standardization
ml	Milliliter
MRS	De Man Rogosa Sharpe media
ТА	Titratable Acidity
S. aureus	Staphylococcus aureus
S.E.	Standard error
Spp.	Species
TY	Traditional yoghurt
BY	Bifidus yoghurt (starter: B.bifidium)
LY	Bifidus yoghurt (starter: B.lactis)
MY	Bifidus yoghurt (starter: B.bifidium + B.lactis)
SPSS	Statistical Package for the Social Science
TSI	Triple sugar iron agar
WHO	World Health Organization