

Production of callus from different parts of *Balanites Aegyptiacae* and study the effect of callus extract on different cell lines

Presented by

Shaimaa Sabry Mohamed Elsayed

(Associate Researcher in Medicinal and Aromatic Plant Department, Horticulture Research institute, Agriculture Research Center)

> A Thesis Submitted To Faculty of Science

In Partial Fulfillment of the Requirements for The Degree of PhD of Science (Biochemistry)

Chemistry Department Faculty of Science Cairo University

(2022)

ABSTRACT

Student Name: Shaimaa Sabry Mohamed Elsayed

Title of the thesis: Production of callus from different parts of *Balanites Aegyptiacae* and study the effect of callus extract on different cell lines.

Degree: PhD of Science (Biochemistry)

Study objective: the aim of this study to evaluate the role of plant growth regulator (PGR) and different elicitors *in vitro* to induce the enhancement of bioactive compound (Diosgenin) production in callus culture from different parts of *Balanites Aegyptiacae* plant and study the effect of diosgenin extract free and functionalized with IONPs synthesized by coprecipitation method on cell viability of HepG2 carcinoma and A549 lung carcinoma and determination of P53 levels in HepG2. **Results and conclusion:** the highest diosgenin content obtained from root part culture elicited with tryptophan 300mg/l was 3.12 mg/100g DW, the cytotoxic activity of the root callus extract supplemented with tryptophan was determined against HepG2 (hepatic carcinoma), A549 (Lung carcinoma cell lines) and the result was 51.26 µm/ml, 28.9 µm/ml respectively. Also the results of this study showed that the FTIR and HRTEM confirm the formation of IONPs with size ranging from (6-14)nm , FTIR confirm the conjugation chemistry between diosgenin and IONPs via citric acid as a linker by the presence of iron oxide signature peak at 501cm-1 and signature peak of diosgenin at 2927.06, 1050.56 and 1640.32cm-1. also our results demonstrated that the cytotoxic effect of functionalized diosgenin IONPs-D increased against HepG2 and A549 and became IC50 at 20.38 µg and 0.795µg respectively , Our study reported that Diosgenin free and functionalized induced cell cycle arrest and apoptosis via activation of P53 expression to be 2.3 and 3.4 respectively when compared with control.

Keywords: *B.Aegypticae*, callus induction, diosgenin bio-production, Elicitation, IONPs synthesis, functionalized diosgenin, hepatocellular carcinoma, A549 lung carcinoma.

Supervisors:

Prof. Dr. Mohamed Ahmed Badawy

Professor of organic chemistry, Faculty of science, Cairo University

Signature:

Prof. Dr. Mohamed Ali El-Desouky

Professor of biochemistry, Faculty of science, Cairo University **Signature:**

Dr. Sherif Saied Saleh

Associate professor, Medicinal and Aromatic Plant Res.Dep. Horticulture Research. Institute, Agriculture research center (A.R.C).

Signature:

Prof. Dr. Tayseer Abdelkhalek Abdallah

Chairman of Chemistry Department Faculty of Science- Cairo University Signature

Contents

Subject	Page
List of figures	ii
List of Tables	iii
List of Abbreviation	iv
Introduction	1
Aim of work	3
Review of Literature	4
Material and Methods	19
Results	27
Discussion	44
Summary and conclusion	54
References	58

List of Figures

Figure	Title	Page
1	Balanites Aegyptiacae (L.) Delil tree	5
2	Leaves and fruits of Balanites Aegyptiacae	6
3	HPLC spectrum of standard Diosgenin	31
4	HPLC Spectrum of diosgenin purified from B. Aegyptiacae cell culture extract (glutamine 300ppm).	31
5	HPLC Spectrum of diosgenin purified from B. Aegyptiacae cell culture extract (glutamine 300ppm).	32
6	HPLC Spectrum of diosgenin purified from B. Aegyptiacae cell culture extract (phenylalanine 100ppm)	32
7	Analysis of surface morphology by high resolution transmission electron microscopy (HRTEM) for IONPs with scale bar indicating 100 nm	33
8	Analysis of surface morphology by high resolution transmission electron microscopy (HRTEM) for IONPs with scale bar indicating 100 nm.	34
9	FTIR analysis of synthesized IONPs	35
10	FTIR analysis of free diosgenin.	36
11	FTIR analysis of synthesized IONPs-D	37
12	Inhibitory effect against HNC (Human Normal cells) control	38
13	Inhibitory effect against HNC (Human Normal cells) in the presence of extract.	38
14	Inhibitory effect against Hepatocellular Carcinoma (HepG2)control	39
15	Inhibitory effect against hepatocellular carcinoma (HepG2) in the presence of diosgenin extract.	39
16	Inhibitory effect against (Human lung Carcinoma A549) control	40

17	Inhibitory effect against (Human lung Carcinoma A549) in the presence of diosgenin extract.	40
18	Inhibitory effect against (hepatocellular Carcinoma HepG2) in the presence of functionalized diosgenin IONPs-D complex.	41
19	Inhibitory effect against (Human lung carcinoma A549) in the presence of functionalized diosgenin IONPs-D complex.	41
20	Effect of diosgenin free and functionalized diosgenin (IONPs-D) on cell cycle –related protein P53. After diosgenin treatment for 24h total RNAwas isolated and quantitative RT-PCR was performed.	43
21	Mechanism of action of diosgenin in NF_kB and STAT3 signaling pathway.	53

List of Tables

Table	Content	Page
Table (1)	effect of plant growth regulator (PGR) and	28
	elicitation addition on callus induction	
Table (2)	Effect of elicitation treatments on Diosgenin	29
	content in Balanites Aegyptiacae callus dry	
	weight	
Table (3)	Determination of diosgenin content by HPLC in	30
	callus extract from three parts of plant.	
Table (4)	Apoptotic effect of free diosgenin and	42
	functionalized diosgenin IONPs-D on cell cycle	
	relatedproteinP53 levels after 24h for HepG2	
	cancer cell	

List of Abbreviation

B. Aegyptiacae	Balanites Aegyptiacae
MS Media	Murashige and Skoog medium
NAA	Naphthaline acetic acid
2,4D	Dichlorophenoxy acetic acid
BAP	Benzyl amino purine
HPLC	High performance liquid chromatography
IONPs	Iron oxide nanoparticles
IONPs-CA	Citrate Capped iron oxide nanoparticles
IONs-D	Diosgenin functionalized iron oxide nanoparticles
HRTEM	High resolution transmission electron microscopy
FTIR	Fourier transform infrared
ATCC	American Tyoe culture collection
A549 NSCLC	Human lung carcinoma
HepG2	Hepatocellular carcinoma
KBr	Potassium bromide
CCL4	Carbon tetra chloride
GRD	Glutathione reductase
MDA	Malondialdehyde
DPPH	Diphenyl-2,4,6 trinitrophenyliminoazanium
2-CEPA	Ethylene generating agent 2- chloro ethylphosphonic acid
HMGR	3-hydroxy 3- methylglutaryl-coenzyme A reductase
CAS	CRISPER
НСС	Hepatocellular carcinoma
JAK 1	Janus Kinase Inhibitor
c-SR	Calcium sensing receptor

MDA-MB-231	Epithelial like cell line
TOR signaling	Target of rapamycin
Vav2	Guanine nucleotide exchange factor
Cdc42	Cell division control protein 42 homolog
TNF- _k B	Tumor necrosis factor beta
STAT3	Signal transducer and activator
U87MG	Human primary glioplastoma cell line
MRI	Magnetic resonance imaging
FCS	Fetal Calf serum
RPMI 1640	L-glutamine, phenol red, reduced serum
MTT	3-(4,5 dimethylthiazole-2-yl)-2,5 diphenyl tetrazolium
	bromide
dCTP	Deoxycytidine triphosphate
dGTP	Deoxyguanosine triphosphate
dTTP	Thymidine triphosphate
PGR	Plant growth regulator
ΤΝΓ-α	Tumor necrosis factor alfa