

Faculty of Agriculture Minia University

Evaluation of some medicinal and aromatic plants as antioxidants

A Thesis Presented by

Heba kenawy Sayed Mohamed

Faculty of Agriculture, Minia University

B.Sc. of Agricultural Science, Minia University (2012)

M.Sc. of Agricultural Science, Minia University (2016)

For the Partial Fulfillment of Ph. D. Degree in Agricultural chemistry "BioChemistry"

Under Supervision of Prof. Dr. Mohammady A. Issa **Emeritus Professor of Agricultural chemistry Agricultural Chemistry Department** Faculty of Agriculture, Minia University Prof. Dr. Hamadi A. Ismail **Emeritus Professor of Agricultural Chemistry Agricultural Chemistry Department** Faculty of Agriculture, Minia University Prof. Dr. Magda E. Mahmoud **Emeritus Professor of Agricultural Chemistry Agricultural Chemistry Department** Faculty of Agriculture, Minia University Prof. Dr. Emad A. K. Hassan Prof. of central Lab. of Organic Agric. (ARC)/ Genetics and plant breeding

Minia 2022

CONTENTS

ACNOWLEDGEMNTS	Ι	
LIST OF TABLE		
LIST OF FIGURE		
ABBREVIATIONS		
I. INTRODUCTION		
II. REVIW OF LITERATURE		
Medicinal plants	5 5	
Phytochemical screening	5	
Antioxdant activity	6	
Cell line	7	
breast cancer	7	
Lung cancer	8	
Hepatocelluar carcinoma	8	
Aromatic medicinal pants	9	
Hibiscus sabdariffa	9	
Cymbopogon citratus	15	
Lawsonia inermis	23	
III. MATERIAL AND METHODS	34	
1. Plant Materials	34	
2.Preparation of leaves extract	34	
3.Qualitative Phytochemical Analysis	34	
3.1. Detection of Phenols	34	
3.2. Detection of Flavonoids	34	
3.3. Detection of Steroids	35	
3.4. Detection of Terpenoids	35	
3.5. Detection of Tannins	35	
3.6. Detection of Saponins	35	
3.7. Detection of Emodins	35	
3.8. Detection of Fatty Acids	35	
3.9. Detection of Anthocyanins	36	
3.10. Detection of Glycosides	36	
4. Quantitative Phytochemical Analysis	36	
4.1. Total Steroids Content:	36	
4.2.Total Terpenoids Content:	36	
4.3.Total Tannins Content	37	
4.4.Total Phenolics Content	37	
4.5.Total Flavonoids Content	38	
5. Antioxidant activity determination	38	
5. 1. Estimation of antioxidant activity with 2,2'diphenyl-		
1- picrylhydrazyl (DPPH) radical scavenging method	38	

Arabic summary	
REFFRENCE	71
ENGLISH SUMMMARY	65
	64
	60
	50
	56
•	52
cells lines 4.1 The cytotoxic effect of several plants extracts	52
4. Cytotoxic effects of plant leaves extracts on three different	
	51
3.2. Free radical scavenging of ABTS Assay	50
	48
	48
Content	47
2.4.Quantitative analysis of Total Phenolic and Flavonoid	
sabdariffa, C. citratus and L. inermis leaves	46
	46
	45
	43
	42
	42
	41
	40
	40 40
	40
Activity	40
Sulphonic Acid)] Assay for Free Radical Scavenging	39
	Activity5.3.Ferric Reducing Antioxidant Power FRAP Assay6. Cell line6. 1. Cytotoxicity assayStatistical AnalysisRESULTS AND DISCUSSION1. Qualitative Analysis of Phytochemicals1.1.Preliminary Phytochemical Screening of <i>H. sabdariffa</i> 1.2. Preliminary Phytochemical Screening of <i>L. inermis</i> 2. Quantitative analysis of some Phytochemicals2. 1. Quantitative analysis of Phytochemicals of <i>H. sabdariffa</i> , <i>C. citratus</i> and <i>L. inermis</i> leaves2.4.Quantitative analysis of Total Phenolic and FlavonoidContent3. Antioxdant Activity3.1. Free radical scavenging of ABTS Assay3.2. Free radical scavenging of FRAP assay4. Cytotoxic effects of plant leaves extracts on three different cells lines4.1. The cytotoxic effect of several plants extracts on hepatocellular carcinoma HepG2 Cell line <i>In vitro</i> 4.2. The cytotoxic effect of several plants extracts on lung cancer A549 Cell line <i>In vitro</i> 4.3. The Cytotoxic effect of several plants extracts on lung cancer A549 Cell line <i>In vitro</i> ConclusionENGLISH SUMMMARY

List of Tables

Table	Title	Page
1	Qualitative analysis of Phytochemical screening tests of <i>H. Sabdariffa</i> leaves 80% ethanol , hexane and ethyl acetate extracts.	43
2	Qualitative analysis of Phytochemical screening tests of <i>C. Citratus</i> leaves 80%ethanol , hexane and ethyl acetate extracts	44
3	Qualitative analysis of Phytochemical screening tests of of <i>L. inermis</i> leaves 80% ethanol, hexane and ethyl acetate extracts	45
4	Quantitative determination of Phytochemical extracts of <i>H. Sabdariffa</i> , <i>C. Citratus and L.</i> <i>inermis</i> leaves.	47
5	Total phenolic and flavonoid content of <i>H</i> . <i>Sabdariffa, C. Citratus and L. inermis</i> leaves. leaves.extracts.	48
6	Antioxidant activity based on DPPH redical scavenging activity of extracts of <i>H. Sabdariffa</i> , <i>C. Citratus and L. inermis</i> leaves.	49
7	Antioxidant activity ABTS assay extracts of <i>H</i> . <i>Sabdariffa, C. Citratus and L. inermis</i> leaves.	50
8	Antioxidant activity FRAP assay extracts of <i>H</i> . Sabdariffa, C. Citratus and L. inermis leaves.	51
9	The percentage of HepG2cell viability of 80% ethanol, ethyl acetate and hexane extracts of <i>H. Sabdariffa</i> , <i>C. Citratus</i> and <i>L. inermis</i> leaves	53
10	The percentage of MCF-7 cell viability of 80% ethanol, ethyl acetate and hexane extracts of <i>H</i> . <i>Sabdariffa</i> , <i>C</i> . <i>Citratus</i> and <i>L</i> . <i>inermis</i> leaves	57
11	The percentage of A549cell viability of 80% ethanol, ethyl acetate and hexane extracts of <i>H</i> . <i>Sabdariffa</i> , <i>C</i> . <i>Citratus</i> and <i>L</i> . <i>inermis</i> leaves .	61

List of Figures

No		page
1	Effect of <i>H. sabdariffa</i> , <i>C. Citratus and L. Inermis</i>	
	extracts (Ethanol, Ethyl acetate and Hexane) on	
	human Liver cancer (HepG2) cell viability by the	
	SRB assay. The data were expressed as Mean \pm SD of	
	separated triplicate experiment.	
		55
2	Fig 1. Effect of H. sabdariffa, C. Citratus and L.	
	Inermis extracts (Ethanol, Ethyl acetate and Hexane)	
	on human breast cancer (Mcf-7) cell viability by the	
	SRB assay. The data were expressed as Mean \pm SD of	58
	separated triplicate experiment.	
	Fig 1. Effect of H. sabdariffa, C. Citratus and L.	
3	Inermis extracts (Ethanol, Ethyl acetate and Hexane)	
	on human lung cancer (A549) cell viability by the	
	SRB assay. The data were expressed as Mean \pm SD of	62
	separated triplicate experiment.	

LIST OF ABBREVIATIONS

	í literatura de la construcción de
A549	Human Lung carcinoma
ABTS	2,2'-Azinobis(3-Ethylbenzothiazoline-6-Sulphonic
	Acid
DMEM	Dulbecco's Modified eagle medium
DPPH	2,2-diphenyl-1-picrylhydrazyl
ERK	Extracellular signal-regulated kinase
FRAP	Ferric Reducing Antioxidant Power
FTIR	Fourier Transform Infrared spectroscopy
GAE	Gallic Acid Equivalent
GC/MS	Gas and Chromatography-Mass Spectroscopy
HCC	hepatocellular carcinoma
HePG2	Human livrer cancer
HPLC	High-performance liquid chromatography
IC ₅₀	Inhibitory concentration 50
LPS	Lipopolysaccharide
MAPK	Mitogen-activated protein kinase
MCF-7	Human breast cancer cell lines
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
	tetrazolium bromide
PI3K	Phosphatidylinositol 3-kinase
QE	Quercetin equivalents
ROS	reactive oxygen species
SOD	Super oxide dismutase
TAC	total antioxidant capacity
TBARS	thiobarbituric acid reactive substances
TFC	Total flavonoid content
TG	Triglycerides
TL	Total lipids
TLC	Thin layer chromatography
TPC	Total phenolic content
WHO	World Health Organization

SUMMARY

The leaves of *H. sabdariffa*, *C. citratus* and *L. inermis* were collected from the experimental farm, Fac. of Agric., Minia University. The leaves powder were extracted (1:7 w/v) separately with 80% ethanol, ethyl acetate and n-hexane for 6 hr with constant stirring at room temperature. Suspensions were filtered through Whatman No.1 filter paper.

Qualitative Phytochemical Analysis

The results of the phytochemical constituents of *H. sabdariffa* leaves extract exhibited phenols and flavonoids in 80% ethanol extract, terpenoids in ethyl acetate extract, steroid and tannins in n- hexane ,and emodins in ethyl acetate extract at higher amounts. Terpenoids, anthocyanins , steroids and tannins in 80% ethanol extract, glycosides and emodins in n-hexane extract, phenols and flavonoids in ethyl acetate extract were found at moderate amounts, whereas glycosides, and emodins in 80% ethanol extract, saponins, terpenoids, phenols and flavonoids in n-hexane extract, and anthocyanins, steroids , tannins and glycosides in ethyl acetate at lower amounts.

The result also showed that saponins and fatty acids in 80% ethanol extract, steroids, anthocyanins, and fatty acids in hexane extract, and saponins and fatty acids in ethyl acetate extract were absent. Table (1) showed that *H. sabdariffa* was absent in fatty acid in 80% ethanol, ethyl acetate, and n-hexane extract.

The results of the phytochemical constituents of *C. citratus* extract (exhibited the presence of terpenoids, steroids, tannins, phenols and flavonoids in ethyl acetate, 80% ethanol, n- hexane, ethyl acetate and 80% ethanol extract at higher amounts, respectively.

65

Glycosides and terpenoids in 80% ethanol extract; saponins and phenols in n-hexane extract; steroids, tannins and flavonoids in ethyl acetate extract were found at moderate amounts, respectively, whereas tannins, anthocyanins, and phenols in 80% ethanol extract; fatty acids steroids, terpenoids and glycosides in n-hexane extract; and saponins, glycosides and emodins in ethyl acetate extract were found at low amounts.

The result showed that saponins, fatty acids and emodins in 80% ethanol extract; tannins, anthocyanins and flavonoids and emodins in n-hexane extract and anthocyanins and fatty acids in ethyl acetate extract were absent.

The results of the phytochemical constituents of *L. inermis* extract (T exhibited the presence of steroids, tannins in 80% ethanol extract, terpenoids, phenols and flavonoids in ethyl acetate extract were found at high amounts. Terpenoids, anthocyanins, flavonoids and phenols in 80% ethanol extract; Tannins in n-hexane extract; glycosides and steroids in ethyl acetate extract were found at moderate amounts, whereas glycosides, and emodins in 80% ethanol extract; anthocyanins, terpenoids, steroids phenols, flavonoids, and emodins in n-hexane extract; Tannins and emodins in ethyl acetate extract were found at low amounts.

Quantitative analysis of some Phytochemicals

The result of the terpenoids, steroids and tannins of three plant leaves in different solvents. *H. sabdariffa* of n-hexane extract had the highest tannins content (1220.02 ± 65.45) mg/g, whereas *H. sabdariffa* had lowest tannins content (18.96 ± 1.59) mg/g in ethyl acetate. *H. sabdariffa* had lowest steroids content (12.82 ± 1.60) mg/g in ethyl acetate. *H. sabdariffa* had lowest terpenoids content (11.28 ± 1.45) mg/g in n-hexane. It can be noted that there is a slight variation of terpenoids concentration between all extracts of both *L. inermis* and *H. sabdariffa*, whereas *C. citratus* had lowest terpenoids concentration. The steroid concentrations in the 80% ethanol and ethyl acetate extracts of *L. inermis* were (310 ± 4.44) and 280.76±8.87) mg/g, respectively, which is more than that of *H. sabdariffa* and *C. citratus*. Among all plant extracts, *L. inermis* of 80% ethanol extract had the highest tannins content (4573.28±214.47), followed by n-hexane extract (4150.69±389.08) and ethyl acetate extract (3973.37±231.7) mg/g.

Ethyl acetate extracted was the highest Total phenolic content (TPC) and total flavonoids content (TFC) in *L. inermis* (141.84 \pm 6.7 and 29.56 \pm 1.63) mg /100g, respectively. On the other hand, TPC and TFC in 80% ethanol extract obtained from *H. sabdariffa* were recorded to be (83.91 \pm 6.58 and 34.09 \pm 2.11 05mg /100g), respectively higher than other extracts. Ethyl acetate extracted the highest TPC (66.8 \pm 3.6 mg /100g) in *C. citratus* and 80% ethanol extracted the highest sTFC (37.23 \pm 2.05mg /100g) when compared to other extracts.

DPPH Radical Scavenging Assay

The expression IC₅₀ (efficient concentration value) is applied to explain the results from the DPPH assay which define as the concentration of substrate that cause 50% loss of the DPPH activity. In this study, *C. citratus* leave extract antioxidant activity showed for 80% ethanol extracts of an IC₅₀ of 68.78 \pm 2.3 µg/ml in DPPH radical scavenging assay to be significantly higher than that of ethyl acetate and n-hexane extract (296.9 \pm 10.8 and above 1000 mg/g, respectively).

On other hand, IC₅₀ value of 80% ethanol extract of both *L. inermis* and *H. sabdariffa* were lower (69.49 \pm 3.1 µg/ ml and 110.4 \pm 7.35 µg/ ml, respectively), which showed that the plant leave extracts antioxidant activity was to be effective in these solvent extracts. Among all extracts studied, the n-hexane leaf extract of *L. inermis and H. sabdariffa* extract

had higher IC₅₀ values (above 1000 and $823.8\pm 30.2 \ \mu g \ /ml$), respectively, which indicated insufficient scavenging activity.

ABTS Radical Scavenging Assay

The relative antioxidant capacity was estimated by calculating the ability to scavenge ABTS⁺ of a specific compound against standard Trolox. Potassium persulphate was utilized to form ABTS⁺ in the stable form. After achieving a steady optical density, the extract was allowed to react with the prepared solution, and the antioxidant capacity was assessed by decolorization. The ABTS was the highest for ethyl acetate leaf extract of *L. inermis* (799.63±11.5 μ M TE/mg). The lowest value was observed for n-hexane leaf extract of both *C. citratus* and *L inermis* (30.13±3.8 and 69.5±6.3 μ M TE/mg), respectively. Thus 80% ethanol extract for all plants displayed the maximum antioxidant capability in ABTS radical scavenging assay.

Ferric-Reducing Antioxidant Power (FRAP) Assay

The ferric reducing antioxidant powers of all extracts of *C. citratus, L. inermis and H. sabdariffa* are shown represented by μ M Trolox Equivalents/mg. The obtained values pointed out the reducing ability of 80% ethanol extract of *C. citratus, L. inermis* and *H. sabdariffa* was the highest among the other extracts (630.22±25.7, 746.69±54.49 and 546.70±20.3 μ M TE /mg), respectively. The ethyl acetate extract of *L. inermis* leaves had more reducing ability than *H. sabdariffa* and *C. citrates* (729.26 ± 52.02, 171.31± 17.28 and 135.44 ± 12.50) respectively, While n-hexane extract had the lowest reducing ability than the rest of the extracts under this study.

In vitro cytotoxic activity of different extracts of plants on hepatocellular carcinoma (HepG2) Cell line

The cytotoxic effects of *H. sabdariffa, C. citratus and L. inermis* leaves extracts were investigated against HepG2 cell line. Cell viability was

assayed using SRB assay. The IC_{50} was detected for all the plant extracts which have showed cytotoxic activity.

The percentage of cell viability of 80% ethanol, ethyl acetate and nhexane extract from *H. sabdariffa* on HepG2 cell line were 89.03%, 91.72 % and 93.41% at the concentration of 10 μ g/ml, respectively; 86.01% 88.89% and 66.02% at the concentration of 100 μ g/ml, respectively and 34.08%, 1.11% and 0.20% at the concentration of 1000 μ g/ml, respectively.

The percentage of cell viability of 80% ethanol, ethyl acetate and nhexane extracts from *C. citratus* on HepG2 cell line were 89.80%, 86.73% and 89.64% at the concentration of 10 μ g/ml, respectively; 86.55% 41.22% and 71.72% at the concentration of 100 μ g/ml, respectively and 2.09%, 3.86% and 12.03% at the concentration of 1000 μ g/ml, respectively.

The percentage of cell viability of 80% ethanol, ethyl acetate and nhexane extract from *L. Inermis* on HepG2 cell line were 87.62%, 92.84 % and 87.48% at the concentration of 10 μ g/ml, respectively; 72.18% 89. 91% and 73.58% at the concentration of 100 μ g/ml, respectively and 3.23%, 0.78% and 1.05% at the concentration of 1000 μ g/ml, respectively.

In vitro cytotoxic activity of different extracts of plants on breast cancer (MCF-7) cell line

The percentage of cell viability of *H. sabdariffa* of 80% ethanol, ethyl acetate and hexane extract on MCF-7 cell line were 91.01%, 93.87% and 98.80% at the concentration of 10 μ g/ml, respectively; 79.57%, 89.91% and 64.70% at the concentration of 100 μ g/ml, respectively and 31.28%, 0.78% and 0.86% at the concentration of 1000 μ g/ml, respectively.

The percentage of cell viability of *C. citratus* of 80% ethanol, ethyl acetate and n-hexane on MCF-7 cell line were 91.01 %, 95.60 % and 96.55% at the concentration of 10 μ g/ml, respectively; 79.57%, 66.24%

and 77.16% at the concentration of 100μ g/ml, respectively **a**nd 31.28 %, 5.021% and 15.14% at the concentration of 1000μ g/ml, respectively.

The percentage of cell viability in 80% ethanol, ethyl acetate and nhexane extract from *L. Inermis* on MCF-7 cell line were 93.72%, 95.08% and 94.61% at the concentration of 10 μ g/ml, respectively; 91.42% 91.50% and 87.10% at the concentration of 100 μ g/ml, respectively and 6.42%, 1.11% and 1.02% at the concentration of 1000 μ g/ml, respectively.

In vitro cytotoxic activity of different extracts of plants on lung cancer (A549) cell line

The percentage of cell viability of *H. sabdariffa* of 80% ethanol, ethyl acetate and hexane on A549 cell line were 92.17%, 90.87% and 93.61% at the concentration of 10 μ g/ml , respectively; 88.22%, 89.08% and 35.99% at the concentration of 100 μ g/ml , respectively and 23.22%, 15.05% and 4.60% at the concentration of 1000 μ g/ml, respectively.

The percentage of cell viability of *C. citratus* of 80% ethanol, ethyl acetate and hexane extract on A549 cell line were 95.26%, 97.3% and 94.51% at the concentration of 10 μ g/ml, respectively; 72.34%, 64.09% and 70.58% at the concentration of 100 μ g/ml, respectively and 1.84 %, 12.47 % and 33.44% at the concentration of 1000 μ g/ml, respectively.

The percentage of cell viability of *L. inermis* of 80% ethanol, ethyl acetate and hexane extract on A549 cell lines were 92.72%, 94.87% and 94.46% at 10 μ g/ml, respectively; 98.42% , 80.08% and 64.43% at the concentration of 100 μ g/ml, respectively and 1.42%, 2.48% and 4.21% at the concentration of 1000 μ g/ml, respectively.