Advanced Analytical Techniques for Screening and Determination of Some Residues and Contaminants in Functional Foods

Thesis submitted for the degree of Doctor of Philosophy in Pharmaceutical Sciences

"Analytical Chemistry"

By Assistant Researcher

Amr Hashim Shendy Ali

MSc. of Pharmaceutical Sciences, 2015

BSc. of Pharmaceutical Sciences, 2007

Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food

Agricultural Research Center

Ministry of Agriculture and Land Reclamation

Under Supervision of

Prof. Dr. Nadia Mohamed Mostafa

Professor of Analytical Chemistry Faculty of Pharmacy Cairo University

Prof. Dr. Sohair Ahmed Gad Alla

Chief Researcher at QCAP Laboratory Agricultural Research Center Ministry of Agriculture

Prof. Dr. Medhat Ahmed Al-Ghobashy

Professor of Analytical Chemistry Faculty of Pharmacy Cairo University

A/Prof. Dr. Wael Mamdouh Sayed

Associate Professor of Chemistry School of Sciences and Engineering The American University in Cairo

Department of Analytical Chemistry

Faculty of Pharmacy Cairo University 2022

List of abbreviations
List of FiguresXII
List of TablesXV
AbstractXVI
SummaryXIX
Part (I): Introduction and Literature Review
1 Introduction
2 Literature review
2.1 Pesticide residue analysis
2.1.1 Extraction procedures of functional foods
2.1.1.1 Classical extraction and clean-up protocols
2.1.1.1.1 Liquid-Liquid Extraction (LLE)
2.1.1.1.2 Liquid-Solid Extraction (LSE)
2.1.1.1.3 Solid-Phase Extraction
2.1.1.1.4 Solid-Phase Micro-Extraction (SPME)
2.1.1.1.5 Matrix Solid-Phase Dispersion (MSPD)
2.1.1.1.6 Supercritical Fluid Extraction (SFE)
2.1.1.1.7 Pressurized Liquid Extraction (PLE)
2.1.1.2 Miniaturized techniques
2.1.1.2.1 Stir Bar Sorptive Extraction (SBSE)
2.1.1.2.2 Liquid-Phase Micro-Extraction (LPME)11
2.1.1.3 QuEChERS-based extraction procedures

2.1.1.3.1 Effect of pH on pesticide extraction efficiency
2.1.1.3.2 Effects of various extraction solvents on extraction efficiency
2.1.1.3.3 Effects of sample size on extraction efficiency
2.1.1.3.4 Types and roles of clean-up sorbents in extraction efficiency
2.1.1.3.5 Effect of freezing-out on QuEChERS extracts' cleanliness
2.1.1.3.6 QuEChERS principal outputs in summary 17
2.1.1.4 Sample dilution and matrix-effect reduction
2.1.2 Instrumentation for pesticide residue determinations
2.1.3 Matrix effects, pattern, and quantitation
2.2 Drug residue analysis
2.2.1 Extraction and detection techniques of antibacterial in infant formula 23
2.2.1.1 Quinolones' extraction and detection in infant formula
2.2.1.2 Tetracycline extraction and detection in infant formula
2.2.1.3 Sulphonamide's extraction and detection in infant formula
2.2.1.4 Amphenicols extraction and detection in infant formula
2.2.1.5 Multi-class antibacterial residue analysis in infant formula
2.3 Vitamin analysis in infant formula
2.3.1 Extraction and detection techniques of WSV in infant formula
2.3.2 Extraction and detection techniques of vitamin D in infant formula 34
Part (II): GC-MS/MS Coupled to PCA for Matrix Effect Evaluation and Efficient
Determination of Pesticide Residues in Some Functional Foods
1 Introduction
2 Materials and Methods
2.1 Chemicals, Reagents, and Standard Solutions
2.2 Instrumentation and Analysis Conditions

2.3 Samples Collection
2.4 Sample Preparation
2.5 Calibration
2.5.1 Dilution and Matrix Effect Evaluation
2.6 Statistical Analysis
2.6.1 Principal Components Analysis 55
2.6.2 Analysis of Variance (ANOVA)
2.7 Validation
2.8 Application to Commercial and Proficiency Testing Samples
3 Results and Discussion
3.1 Instrumentation and Analysis Conditions
3.1.1 GC-MS/MS Optimization 57
3.2 Calibration
3.2.1 Dilution Magnitude and Matrix Effect Analysis
3.3 Statistical Analysis
3.3.1 Principal Component Analysis (PCA) 136
3.3.2 PCA of matrix effect percentages 146
3.3.3 ANOVA for Matrix Effect Percentages 152
3.4 Validation
3.5 Application of Assay Protocol 192
3.5.1 Application to Commercial Samples
4 Conclusion
Part (III) LC-MS/MS Coupled to a "Dilute and Shoot" Analysis Approach for
Antibacterial Residues and Vitamins Determination in Infant Formula 203
1 Introduction

2 Materials and Methods	
2.1 Chemicals, Reagents, and Standard Solutions	
2.2 Instrumentation, software, and analysis conditions	207
2.3 Samples Collection	211
2.4 Sample preparation	211
2.4.1 Extraction	211
2.5 Calibration and validation	212
2.5.1 Calibration	212
2.5.2 Validation	212
2.6 Application to commercial and proficiency testing samples	213
3 Results and discussion	
3.1 Analysis strategy, challenges, and selection criteria	214
3.2 Instrumentation and conditions	226
3.2.1 MS/MS optimization	226
3.2.2 LC optimization	227
3.3 Sample preparation	258
3.3.1 Extraction optimization	258
3.4 Calibration and quantification	
3.4.1 Linearity, working range, and matrix effect	
3.5 Validation procedure	272
3.5.1 Selectivity/Specificity	272
3.5.2 Accuracy and precision	293
3.5.3 LOD, and LOQ	
3.5.4 Decision limit (CC α) and detection capability (CC β)	
3.5.5 Measurement uncertainty (MU)	

3.6 Application of assay protocol	302
3.6.1 Application to commercial infant formulae samples	302
3.6.2 Application to previously analyzed proficiency testing samples	303
4 Conclusion 3	305
General conclusion	306
References	307

List of abbreviations

ACN	Acetonitrile
AMR	Antimicrobial Resistance
ANOVA	Analysis of Variance
AOAC	Association of Official Analytical Chemists
APCI	Atmospheric Pressure Chemical Ionization
BLK	Blank
CAC	Codex Alimentarius Commission
CAP	Chloramphenicol
CCα	Decision Limit
ССβ	Detection Capability
CI	Chemical Ionization
CPS	Count Per Second
CV%	Coefficient of Variation Percent
DAD	Diode Array Detector
DLLME	Dispersive Liquid-Liquid Microextraction
d-SPE	Dispersive Solid Phase Extraction
DTT	Di-Thiothreitol
EA	Ethyl Acetate
EC	European Commission
EDTA	Ethylene Diamine Tetra Acetic Acid
EI	Electron Impact
ESI	Electro Spray Ionization
FAPAS	Food Analysis Performance Assessment Scheme
FDA	Food and Drug Administration
FOSHU	Japanese Foods for Specified Health Use
FQs	Fluoroquinolones
FSVs	Fat-Soluble Vitamins

List of Abbreviations

GC	Gas Chromatography
GCB	Graphitized Carbon Black
CD-IMS	Corona Discharge Ion Mobility Spectrometer
GC-MS	Gas Chromatography Mass Spectrometry
GC-MS/MS	Gas Chromatography Tandem Mass Spectrometry
GPC	Gel Permeation Chromatography
HILIC	Hydrophilic Interaction Liquid Chromatography
HPLC	High Performance Liquid Chromatography
HR	High Resolution
HLB	Hydrophilic-Lipophilic-Balance
IAC	Immune Affinity Column
IDA	Information Dependent Acquisition
ID	Isotope Dilution
IF	Infant formulae
IL/IL	Ionic Liquid/Ionic Liquid
IQC	Internal Quality Control
ISTD	Injection Standard
LC	Liquid Chromatography
LCLs	Lowest Calibration Levels
LC-MS/MS	Liquid Chromatography Tandem Mass Spectrometry
LLE	Liquid-Liquid Extraction
LOD	Limit of Detection
LOQ	Limit of Quantitation
LPME	Liquid-Phase Microextraction
LSE	Liquid-Solid Extraction
M/Z	Mass/Charge ratio
MCQA	Matrix Clustering Quantification Approach
ME	Matrix Effect
MeOH	Methanol
MIPs	Molecularly Imprinted Polymers
MMC	Matrix Matched Calibration

MRL	Maximum Residue Limit
MRM	Multiple Reaction Monitoring
MRPL	Minimum Required Performance Limit
MSPD	Matrix Solid-Phase Dispersion
MU	Measurement Uncertainty
MWCNTs	Multi-Walled Carbon Nanotubes
NSC	Neat Standard Calibration
OCPs	Organochlorine Pesticides
OPPs	Organo-phosphorous Pesticides
PCA	Principal Component Analysis
PLE	Pressurized-Liquid Extraction
ppb	Part per Billion
PSA	Primary Secondary Amine
РТ	Proficiency Test
PTFE	Polytetrafluoroethylene
QA/QC	Quality Assurance/Quality Control
QC	Quality Control
QuEChERS	Quick, Easy, Cheap, Effective, Rugged and Safe
R-MMC	Representative Matrix-Matched Calibration
RPA	Reference Point of Action
RSD	Relative Standard Deviation
tR	Retention Time
SALLE	Salting-out Assisted Liquid-Liquid Extraction
SANTE	DG Health and Food Safety
SBSE	Stir Bar Sorptive Extraction
SFE	Supercritical-Fluid Extraction
SIM	Selected Ion Monitoring
SMPR	Standard Method Performance Requirement
SPE	Solid Phase Extraction
SPME	Solid-Phase Microextraction
SRM	Selected Reaction Monitoring

List of Abbreviations

SRM	Standard Reference Material
TCs	Tetracyclines
TIC	Total Ion Current Chromatogram
TOC	Total Organic Carbon
TOF	Time of Flight
UA	Ultrasound-Assisted
VDIA	Variable Data Independent Acquisition
WHO	World Health Organization
WSV	Water-Soluble Vitamins

List of Figures

Figure 1: Typical total ion current-multiple reaction monitoring chromatogram (TIC-MRM)
of the 200 studied pesticides in a fortified fennel sample at 50.0 μ g/Kg distributed
over 30 MRM- time segments 59
Figure 2: Dilution effects on the matrix effect profile for certain compounds in grape-based
calibrations at 1X and 20X levels
Figure 3: Matrix effect profile per each commodity fortified with 200 pesticides presenting
the number of compounds with tolerable, moderate, and strong effects
Figure 4: PCA scores plot obtained from the data of the TICs of the 16 matrices fortified
with 200 pesticides in (a) PC1-PC2 plane and (b) PC1-PC3 plane 138
Figure 5: One-dimensional loading plot of variables of TICs data showing main positive
and negative loadings on (a) PC1, (b) PC2, and (c) PC3
Figure 6: Confirmation of matrix components effects on analytes/matrices TIC trends
through comparing blank and fortified samples at main loadings points (e.g., anise,
oranges, and caraway)145
Figure 7: PC1 versus PC2 scores plot of the matrix effects percentages of the 200 studied
pesticides in the 16 matrices showing specific trends of commodities with perfect
clusters differentiation147
Figure 8: Percent variance captured by two principal components model for matrix effects
percentages of the 200 studied pesticide in 16 matrices showing each variable
contribution to PC1 and PC2148
Figure 9: One-dimensional loading plot of variables of ME% data showing the main
positive and negative loadings on (a) PC1 and (b) PC2
Figure 10: Percentage recovery and precision values for repeated analysis of strawberry,
orange, and pomegranate spiked samples at (LOQ and 5xLOQ) using R-MMC of
clusters 1, 2, and 3 (anise, grape, and green onion), respectively 191
Figure 11: Optimization of the chromatographic conditions for the twenty studied
compounds using four different LC columns: Identity was confirmed by monitoring
the SRM mass spectrum per each compound

- Figure 12: 3-D SRM extraction for each studied compound in infant formula at their respective lowest calibration levels (LCLs) in a total run time of 12 minutes. 252

List of Tables

Table 1: Multiple reaction monitoring (MRM) transitions and optimal operational
conditions used for 200 pesticide residue analysis by QqQ system
Table 2: Slope difference % of the 200 studied pesticides in 16 matrices arranged in an
ascending order to demonstrate each compound trend in a variety of matrices with
effects ranging from tolerable to strong signal suppression or enhancements
Table 3: Compounds/chemical classes contributing to strong suppression matrix effects in
16 matrices of functional foods
Table 4 : Statistical analysis for slope difference % of the 200 studied pesticides in cluster 1
using one-way single factor ANOVA (A)
Table 5: Analysis results of a strawberry PT sample (round 19178) using the proposed
assay for pesticide residues along with different quantification approaches 182
Table 6: Analysis results of a grape PT sample (round 19222) using the proposed assay for
pesticide residues along with different quantification approaches
Table 7: Analysis results of a potatoes PT sample (round 19206) using the proposed assay
for pesticide residues along with different quantification approaches
Table 8: Analysis results of a mint PT sample (round 19214) using the proposed assay for
pesticide residues along with different quantification approaches
Table 9: Pesticide's detection and quantitation for 30 analyzed samples per each
commodity using GC-MS/MS coupled to MCQA: Results compared to EU-MRL to
address violations
Table 10: Gradient elution program of the separation of the twenty studied compounds
(WSV, Vitamin D3, and some antibacterial) on Agilent Poroshell 120 EC-C18
reverse phase column
Table 11: SRM (selected reaction monitoring) obtained parameters for each studied
compound by MS/MS experiments on a TSQ Altis mass spectrometer. Compounds
are arranged according to their corresponding chemical classifications
Table 12: Physicochemical properties of the twenty studied compounds (WSV, vitamin D3,
and some antibacterial residues)

Table	13: Regression equation parameters and differences obtained for both neat standard
	and matrix-matched calibration curves
Table	14: The obtained accuracy, precision values (repeatability and within-lab
	reproducibility) for the twenty studied compounds in infant formula samples ($n = 7$
	replicates, each)
Table	15: Calibration curves linear dynamic ranges, determination coefficients, LODs,
	LOQs, CCa, and CC β of the proposed assay protocol for the determination of the
	twenty studied compounds in infant formula
Table	16: Analysis results of powdered baby food PT samples using the proposed assay
	protocol

Abstract

Functional foods provide nutritional and health benefits, yet they could be contaminated with residues like pesticides and polychlorobiphenyls. These residues affect the safety, quality, and consequently the commercial value of functional foods. Therefore, the validity and efficiency of residue determination methods constitute a major analytical concern. Reduction of matrix effect (ME) has always been the golden key for guaranteed sensitivity, selectivity, and high throughput analysis. This study aims for accurate determination and streamlined quantification of 200 pesticide residues in 16 matrices. Hence, a modified QuEChERS extraction protocol coupled to GC-MS/MS was then employed and separations were obtained in 25 min. Dilution of the final extracts of fresh and herbal samples was carried out to achieve an acceptable balance between sensitivity and peak characteristics. Dilution factors of 1x and 5x were selected for fresh and herbal samples, respectively. Principal component analysis (PCA) was then independently applied on the digitally exported total ion chromatograms (TICs) of the studied matrices and the calculated ME%. PCA score/loading plots of TICs demonstrated the key matrix constituents that influenced the obtained trends. Similarly, three main clusters were obtained after PCA of ME% indicating a dependent relationship between matrix type and the obtained effects. Out of the obtained three clusters, an appropriate representative matrix-matched calibration (R-MMC) was selected for ME compensation. Based on the EU validation guidelines, the proposed protocol was validated at 2 and 10 µg/Kg with acceptable method performance. Four proficiency testing (PT) and commercial samples were successfully analyzed. The proposed protocol would help laboratories to increase sample processing capacity and to ensure the safety of functional food products. This work should serve in setting standards that warrant the quality/safety of functional foods by national regulatory authorities.

On the other hand, Infant formulae (IF) are a significant category of special foods designed to replace a mother's breast milk. In this regard, IF quality and safety testing is critical to ensuring the health and development of this high-risk, vulnerable group. This study aims to develop and validate a streamlined assay protocol for water-soluble vitamins,

Abstract

vitamin D3, and some unauthorized antibacterial residues from various chemical classes. Hence, different IF compositions (cow and goat milk-based formulae) were extracted using an acetonitrile, water, and MeOH (3:4:3 v/v/v) mixture. Following that, the compounds were determined using a direct injection into an ultra-sensitive LC-MS/MS. Separations were carried out in a single chromatographic run over 12.0 minutes, using a Poroshell 120 EC-C18 column. Gradient elution was carried out with a buffered mobile phase of 10 mMole ammonium formate and methanol. The performance characteristics of the method were tested and validated in accordance with EU validation guidelines 808/2021/EC, 657/2002/EC, and Eurachem/CITAC. For all analytes, decision limits (CC α) and detection capabilities (CC β), as well as LODs and LOQs, were well below the RPA of chloramphenicol (0.15 μ g/kg) and the lowest achieved calibration levels (LCLs) per each studied compound. The LODs, LOQs, R^2 , CC α , CC β , percentage recovery, and CV% ranges were (0.0001-0.104 µg/mL, and 0.002-2.36 ng/mL), (0.00004-0.342 µg/mL, and 0.005-7.78 ng/mL, ≥ 0.990 , (0.02-10.29 µg/Kg), (0.04-17.48 µg/Kg), (85.4-110.3%), and (0.8-19.3%), respectively. The reliability of the proposed assay was successfully attested through its application to thirty domestic commercials IF samples from global manufacturers as well as two previously analyzed PT samples. The results confirmed the practicality of the assay along with the suitability of the surveyed samples for infant consumption. This protocol would assist Egyptian regulatory authorities in making the proper decisions regarding the quality and safety of IF shipments while maintaining the least amount of disruption to the stream of commerce.

Keywords: Principal component analysis, GC-MS/MS, LC-MS/MS, functional foods, special foods, infant formula, pesticide residues, antibiotic residues, water-soluble vitamins, vitamin D3, matrix effects, representative matrix.