

Mansoura University Faculty of Veterinary Medicine Pharmacology Department

Effect of some medicinal plants on fertility in cocks

Thesis presented by

Nour El-Hoda Khayrat Khayrat Hammad

(B.V.Sc., Mansoura University, 2012) (M.V.Sc., Mansoura University, 2018)

Under supervision of

Prof. Dr. Magdy Salah Moustafa Amer

Professor of Pharmacology Faculty of Veterinary Medicine - Mansoura University

Prof. Dr. Youssef Yahia Awed El-Saedy

Professor and Head of Physiology Department Faculty of Veterinary Medicine - Mansoura University

Prof. Dr. Azza El-Said Ali Hassan

Professor and Head Researcher of Biochemistry, Nutritional deficiency and Toxicology Department-Animal Health Research Institute - Mansoura Lab

Dr. Sara Taha mohammad El-Azab

Lecturer of Pharmacology Faculty of Veterinary Medicine - Mansoura University

Submitted to

Faculty of Veterinary Medicine, Mansoura University For the PhD of Veterinary Medical Sciences (Pharmacology)

2022

List of Contents

Content	Page No
List of Contents	Ι
List of Tables	II
List of Figures	IV
List of Abbreviations	VII
Introduction	1
Aim of Work	3
Review of Literature	5
Material and Methods	26
Results	40
Discussion	106
Summary	140
Conclusion	144
References	145
Probosal	1
Arabic Summary	١

List of Tables

Table No.	Table	Page
(1)	Composition of the diet used through the study	28
(2)	The primers used for real-time PCR amplification.	39
(3)	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) in 3 rd week post drugs administration on body weight, testicular weight, somato-gonadal index and B.wt/comb and wattles index of clinically healthy adult cocks.	42
(4)	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on total erythrocytic count $(10^{6}/\text{mm}^{3})$ of clinically healthy adult cocks.	44
(5)	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on Hb (gm/dl) of clinically healthy adult cocks.	47
(6)	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on total leucocytic count $(10^3/\text{mm}^3)$ of clinically healthy adult cocks.	50
(7)	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on heterophile% of clinically healthy adult cocks.	53
(8)	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on lymphocyte% of clinically healthy adult cocks.	56
(9)	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on eosinophile % of clinically healthy adult cocks.	59
(10)	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on monocyte% of clinically healthy adult cocks.	62
(11)	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on serum levels of ALT (U/L) of clinically healthy adult cocks.	66
(12)	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on serum levels of AST (U/L) of clinically healthy adult cocks.	69

(13)	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on serum urea levels (mg/dl) of clinically healthy adult cocks.	72
(14)	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on serum creatinine levels (mg/dl) of clinically healthy adult cocks.	75
(15)	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on serum levels of malondialdehyde MDA (nmol/l) of clinically healthy adult cocks.	79
(16)	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on plasma catalase activity (U/L) of clinically healthy adult cocks.	83
(17)	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on reduced glutathione concentration (GSH) (mmol/L) of clinically healthy adult cocks.	86
(18)	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on total serum testosterone levels (ng/ml) of clinically healthy adult cocks.	89
(19)	Effect of the administrated linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) in 3 rd week post fluconazole administration on semen picture of clinically healthy adult cocks.	94
(20)	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) in 3 rd week post fluconazole administration on fertility related genes of clinically healthy adult cocks.	104

List of Figures

Fig. No	Title	Page
1	Chemical structure of fluconazole	27
2	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on total erythrocytic count $(10^{6}/mm^{3})$ of clinically healthy adult cocks.	45
3	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on Hb (gm/dl) of clinically healthy adult cocks.	48
4	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on total leucocytic count (10^3 /mm ³) of clinically healthy adult cocks.	51
5	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on heterophile% of clinically healthy adult cocks.	54
6	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on lymphocyte% of clinically healthy adult cocks.	57
7	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on eosinophile% of clinically healthy adult cocks.	60
8	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on monocyte% of clinically healthy adult cocks.	63
9	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on serum levels of ALT (U/L) of clinically healthy adult cocks.	67
10	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on serum levels of AST (U/L) of clinically healthy adult cocks.	70
11	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on serum urea levels (mg/dl) of clinically healthy adult cocks.	73
12	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on serum creatinine levels (mg/dl) of clinically healthy adult cocks.	76
13	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on serum levels of malondialdehyde MDA (nmol/l) of clinically healthy adult cocks.	80
14	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on plasma catalase activity (U/L) of	84

	clinically healthy adult cocks.	
15	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on reduced glutathione concentration (mmol/L) of clinically healthy adult cocks.	87
16	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) on total serum testosterone levels (ng/ml) of clinically healthy adult cocks.	
17	Showing sperm morphology of clinically healthy adult cocks.	95
18(A&B)	Transvers section of testis control group (G1) showing compact seminiferous tubules with narrow lumen and lined with several layers consisting of spermatogonea cells (1), spermatocytes (2), Sertoli cell (3), spermatid (4) and spermatozoids (5) in (H&E, X: A:100 bar 100 -B:400 bar 50).	98
18 (C&D)	Transvers section of testis of fluconazole treated group (G2) showing wider lumen containing large amount of exfoliated germ cells and vacuolated spermatocytes (H&E, X: C:100 bar100-D:400 bar 50).	98
18 (E&F)	Transvers section of testis of G3 showing wide lumen and mildly vacuolated spermatocytes (H&E, X: E:100 bar 100-F: 400 bar 50).	98
18(G&H)	Transvers section of testis of G4 showing decreased lumen diameter and small amount of exfoliated germ cells (H&E, X: G:100 bar 100-H:400 bar 50).	98
18(I&J)	Transvers section of testis of G5 showing decreased lumen diameter and mildly vacuolated spermatocytes (H&E, X: I:100 bar 100- J: 400 bar 50).	98
18(K&L)	Transvers section of testis of G6 showing compact seminiferous tubules with normal narrow lumen and normal epithelial lining (H&E, X: K:100 bar 100- L: 400 bar 50).	98
19(A&B)	Transvers section of epididymis of control group (G1) showing epididymal duct with great quantity of spermatozoids in lumen and normal epithelial lining (H&E, X: A:100 bar 100- B:400 bar 50).	99
19 (C,D&E)	Transvers section of epididymis of fluconazole treated group (G2) showing marked decrease in diameter of epididymal duct and amount of spermatozoids in lumen with presence of large amount of exfoliated germ cells and round bodies in the lumen, hyperplastic alteration in the lining epithelium forming infolding or cribriform change and pseudoglandular structures besides hyperplasia of clear cells (H&E, X: C:100 bar 100- D&E: 400 bar 50).	99
19(F&G)	Transvers section of epididymis of G3 showing slight increase in amount of spermatozoids in lumen with slightly decreased hyperplastic alteration in the lining epithelium besides presence of few exfoliated germ cells and round bodies in the lumen	99

	(H&E, X: F: 100 bar100- G: 400 bar 50).	
19(H&I)	Transvers section of epididymis of G4 showing moderate increase in amount of spermatozoids in lumen with markedly decreased hyperplastic alteration in the lining epithelium besides presence of few exfoliated germ cells and round bodies in the lumen (black arrows) and mild hyperplasia of clear cells (H&E, X: H:100 bar 100-I: 400 bar 50).	99
20(A&B)	Transvers section of epididymis of G5 showing marked increase in amount of spermatozoids in its lumen with very few vacuoles in lining epithelium (H&E, X: A:100 bar 100- B: 400 bar 50).	100
20(C&D)	Transvers section of epididymis of G6 showing marked increase in amount of spermatozoids in lumen with markedly decreased hyperplastic alteration in the lining epithelium, few exfoliated germ cells and round bodies in the lumen and very few vacuoles in lining epithelium (H&E, X: C:100 bar- C: 400 bar 50).	100
21	Effect of linseed oil (60ml/kg), zingiber oil (20ml/kg) and fluconazole (5mg/kg b.wt) in 3 rd week post fluconazole administration on fertility related genes of clinically healthy adult cocks.	105

List of Abbreviations

Abbreviations	Meaning
3-AT	3-Amino-1,2,4-Triazole
AIDS	Acquaired immunodeficiency syndrom
ALA	α-linolenic acid
ALT	Alanine transaminase
ALP	Alkaline phosphatase
AST	Aspartate transaninase
B.Wt	Body weight
CAT	Catalase
CYP17 A1	Cytochrome P450 17A1
DHA	Docosahexaenoic acid
DHEA	Dehydroepiandrosterone
DHT	Dihydrotestosterone
DM	Dry matter
DNA	Deoxyribonucleic acid
cDNA	Complementary DNA is a DNA copy of a messenger RNA
EDTA	Ethylene diamine tetra-acetic acid
ELISA	Enzyme Linked Immunosorbent Assay
FCR	Feed Conversion Rate
EPA	Eicosapentaenoic acid
FSH	Follicular Stimulating Hormone
g/dl	Gram per decilitre
GAPDH	Glyceraldehyde-3-phosphate dehydrogenase
GGT	Gamma Glutamyltransferase
GIT	Gastrointestinal tract.
GnRH	Gonadotropin-releasing hormone
GP	Ginger powder
GPx & GSH-Px	Glutathione peroxidase
GSH	Reduced glutathione
GSSG	Oxidized glutathione

H&E	Hematoxylin and Eosin
Hb	Hemoglobin
I/V	Intra-venous
L	Liter
LH	Lutinizing hormone
LHR	Lutinizing hormone receptors
LIN	Linseed
LO	Linseed oil
MAGI	Male accessory gland infection
МСН	Mean Corpuscular Hemoglobin
МСНС	Mean Corpuscular Hemoglobin Concentration
MDA	Malondialdhyde
MCV	Mean Corpuscular Volume
mg/dl	Milligram per dieciliter
mg/kg	Milligram per kilogram
mmol/l	millimoles per litre
ng/ml	Nano gram per milliliter
nmol/l	Nanomole per liter
PCR	Polymerase chain reaction
PCV	packed cell volume
PUFA	Polyunsaturated fatty acids
RBCs	Red blood corpuscles
RNA	Ribonucleic acid
ROS	reactive oxygen species
r.p.m	Round per minute
SO	sunflower oil
SOD	superoxide dismutase
TAC	Total antioxidant capacity
U/L	Unite per liter
WBCs	White blood corpuscles

Summary

This study was performed to evaluate the potential ameliorative effect of linseed oil and zingiber oil on male fertility problems induced by fluconazole in cocks and their effects on some performance parameters, some antioxidant markers, testosterone hormone level, semen analysis and expression of fertility related genes in adult cocks. Moreover histopathological examination of testes and epididymis was done. Furthermore, their effect on some hematological and biochemical parameters were investigated.

This study was conducted on 42 clinically healthy mature cocks (1500-1700 gm) were divided into 6 groups each group contains 7 cocks as the following:

1st group: Cocks were served as non-treated group (Control negative).

2nd group: Cocks were given the therapeutic dose of fluconazole (5 mg/kg b.wt /day) orally in drinking water for a week (Control positive).

 3^{rd} group: Cocks were administered the therapeutic dose of fluconazole (5 mg/kg b.wt /day) orally in drinking water for a week, then followed by linseed oil (60 ml/kg DM) for two weeks.

4th **group:** Cocks were administered the therapeutic dose of fluconazole (5 mg/kg b.wt /day) orally in drinking water for a week, then followed by zingber oil (20 ml/kg DM) for two weeks.

5th group: Cocks received linseed oil (60 ml/kg DM) for two weeks, then followed by the therapeutic dose of fluconazole (5 mg/kg b.wt/day) orally in drinking water for a week.

6th group: Cocks received zingber oil (20 ml/kg DM) for two weeks, then followed by the therapeutic dose of fluconazole (5 mg/kg b.wt/day) orally in drinking water for a week.

Blood samples were collected from 5 cocks of each group from wing vein on 1day, 1st week and 2nd weeks post drug administration. The last blood samples were collected on 3rd week post drug administration by slaughtering with sharp knife. Samples were collected in three test tubes, the 1st and 2nd tubes were mixed with salt of ethylene diamine tetra-acetic acid (EDTA). 1st one was centrifuged at 3000 /15 r.p.m to get a clear plasma sample for some anti-oxidant markers estimation, while the 2nd sample subjected to hematological test. Finally, the 3rd blood sample were collected in the blank tube, after that were put in the centrifuge at 3000 /15 rpm to get a clear serum samples. The obtained sera were kept in deep freezer at -20° C until assayed for serum total testosterone and other biochemical parameters.

In the 3rd week post dosing, testis of each cock were collected immediately after slaughtering, cleaned and minced in ice-cold phosphate-buffered saline (PBS, 1:2 w/v, pH 7.4; 37 °C), and squeezing it gently to obtain the fresh undiluted semen in a clean Petri dish and incubated at 37 °C for half an hour for liquefaction to proceed the following examinations. Sperm quality was determined by three parameters: sperm motility, morphology, and viability.

In the 3rd week post drug administration, 5 cocks (from each group) were slaughtered to obtain testes and epididymis were fixed in 20% formalin for histopathological examination. Another part of the testis was kept at -80 °C for conducting quantitative real time polymerase chain reaction (real-time PCR) for gene expression investigation.

After collection of all data, it has been analyzed statistically by computerized SPSS program (Version 19) using one way ANOVA.

From the obtained results, fluconazole induced non- significant changes on the performance parameters (testicular weight, somatogonadal index and B.Wt/comb and wattles index) of treated cocks, while oil supplemented groups before drug administration (G5 & G6) showed a significant increase in weight of testes and weight of comb and wattles when compared with the control group.

The effect of the tested preparations on some heamatological parameters of the treated cocks. The results showed that there was no significant variation in all hematological parameters in fluconazole and other oils supplemented groups either after or before fluconazole administration.

The obtained data reflected a significant increase in ALT, AST and urea levels in fluconazole treated cocks, while creatinine was not significantly altered. Moreover, Fluconazole significantly increased MDA while decreased CAT and GSH, decreased serum testosterone level, decreased mass motility% and live/dead ratio, while significantly which increased abnormal sperm % accompanied by some histopathological alteration in testes and epididymis. Furthermore, the expression of CYP17A1 and LHR genes in testicular tissue showed 2 -3 fold significant decrease, while aromatase gene showed 3 fold significant elevation when compared with the control negative group.

In the presented study, linseed and zingiber oil supplemented groups revealed a significant decrease in ALT, AST and urea levels while creatinine was not significantly changed except in 1st week post fluconazole dosing. Furthermore, oils supplemented groups showed a

significant decrease in MDA but significantly increased CAT and GSH, increased serum testosterone H level and mass motility% of examined semen samples. Also there was a significant decrease in abnormal sperm % and no significant alterations in live/dead ratio in oils supplemented groups when compared with fluconazole treated group G2. The histopathological examination of testes and epididymis of oil supplemented groups revealed a considerable improvement in comparison with fluconazole treated group.

On level of gene expression of fertility related genes, only zingiber oil supplemented group after fluconazole medication, showed 2 fold significant elevation in expressed amount of LHR gene while other oil supplemented groups showed no significant alteration in comparison with fluconazole treated group. All oil given groups showed 1-2 fold significant decrease in aromatase gene expression while significantly increased the expressed CYP17A1 amount by less than 1 fold when compared with FCZ treated group fluconazole treated group.