Benha University Faculty of Science Botany and Microbiology Department

Biofuel production from agricultural residues

By AMINA MAHDY MOHAMED

B.Sc. (Microbiology) 2002 , M.Sc. (Microbiology) 2015 Faculty of Science – Benha University

Ph.D. THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Ph. D. In Science (Microbiology)

SUPERVISION COMMITTEE

Prof. Dr. Mahmoud Abd El-Mohsen Swelim

Professor of Microbiology, Department of Botany, Faculty of Science, Benha University

Ass. Prof. Dr. Ahmed Mohy Eldin Abd El-Samie

Assistant Professor of Agricultural Microbiology, Department of Agricultural Microbiology, Soils, Waters and Environmental Research Institute (SWERI), Agricultural Research Center (ARC)

Prof. Dr. Mahmoud Mostafa Amer

Professor of Microbiology, Department of Botany, Faculty of Science, Benha University

Ass. Prof. Dr. Khadiga Ibrahim El-Gabry

Assistant Professor of Agricultural Microbiology, Department of Agricultural Microbiology, Soils, Waters and Environmental Research Institute (SWERI), Agricultural Research Center (ARC)

2022

2List of Abbreviations

A. fumigatus	Aspergillus fumigatus
A. flavus	Aspergillus flavus
A. neoellipticus	Aspergillus neoellipticus
A. niger	Aspergillus niger
AIC	Akaike Information Criterion
ARC	Agricultural Research Center
B. cereus	Bacillus cereus
ВНТ	Butylated hydroxytoluene
C. tropicalis	Candida tropicalis
C:N	Carbon : Nitrogen
СВР	Consolidated bioprocessing fermentation
СМС	Carboxy methyl Cellulose
СТАВ	Cetyltrimethyl ammonium bromide
СҮА	Czapek's yeast extract agar medium
DNS	3,5-dinitrosalicylic acid
Emim	1-ethyl-3-methylimidazolium acetate
FPase	Filter paper units
GC-MS	Gas chromatography-mass spectrometer
LSD	least significant differences

MEA	Malt extract agar medium
Mha	Million hectare
ML	Maximum-likelihood
MP	Maximum parsimony
MSM	Modified mineral salt medium
Mt/year	Million ton/year
NaClO	Sodium hypochlorite
NRRL	Northern Regional Research Laboratories
PDA	Potato-dextrose agar
PDA	Potato-dextrose agar
Rs	Rice straw
S. cerevisiae	Saccharomyces cerevisiae
Sacch %	Saccharification percentage
SmF	Submerged Fermentation
SSF	Simultaneous saccharification and fermentation
SWERI	Soil, Water and Environmental Research Institute
U/g RS	Units per gram dry rise straw

Contents

No.	Subject list	Page
1.	Introduction	1
	Aim of the work	3
2.	Review	4
3.	Materials and Methods	13
3.1.	Materials	13
3.1.1	Lignocellulosic materials:	13
3.1.2	Microbiological:	13
3.1.2.1	Microorganisms:	13
3.1.2.1.1	Fungi:	13
3.1.2.1.2	Yeast:	14
3.1.2.2	Microbiological media:	14
3.1.2.2.1	Potato-dextrose agar medium	14
3.1.2.2.2	Modified mineral salt medium	14
3.1.2.2.3	Fermentation medium	15
3.1.2.2.4	Czapek's yeast extract agar medium	15
3.1.2.2.5	Malt extract agar medium	16
3.1.3	Chemical:	16

3.1.3.1	Reagents	16
3.1.3.1.1	Dinitro Salicylic acid (DNS)	16
3.1.3.1.2	Potassium dichromate solution	16
3.1.3.2	Buffers	16
3.1.4	Apparatus	17
3.2.	Methods	19
3.2.1	Microbiological	19
3.2.1.1	Isolation of cellulytic fungi	19
3.2.1.2	Cellulase production	19
3.2.1.3	Cellulase production optimization tests	19
3.2.1.4	Saccharification optimization tests	20
3.2.1.5	Ethanol fermentation	20
3.2.1.5.1.1	Fermentation Bottles	20
3.2.1.5.1.2	Fermentor	21
3.2.1.6	Genetic identification	22
3.2.1.6.1	DNA extraction, PCR and sequencing of ITS	22
3.2.1.6.2	Alignments and phylogenetic analyses	22
3.2.2	Analytical	23
3.2.2.1	Cellulase assay	23
3.2.2.2.	Reducing sugar assay (Glucose)	24
3.2.2.3.	Ethanol assay	25

3.2.2.4.	Gas chromatography-mass spectrometry	25
	analysis (GC-MS)	
3.2.3.	Chemical	25
3.2.3.1.	Pretreatments of lignocellulosic materials:	25
3.2.4.	Calculations	26
3.2.5.	Statistical analysis	27
4.	Results	28
4.1.	Isolates and strains	28
4.1.2.	Cellulytic activity of isolates and strains	31
4.1.3.	Fermentation ability of the most cellulytic active fungi	40
4.1.4.	Optimizing cellulase production	43
4.1.4.1.	Optimizing Initial pH value for maximum cellulytic activity	43
4.1.4.1.1.	Variations in pH values during 9 days of cellulase production	44
4.1.4.1.2.	Correlations between FPase activities and variations in pH values	44
4.1.4.2.	Optimizing N source for maximum FPase production	59
4.1.4.2.1.	Cross comparison between maximum cellulytic activities	68
4.1.4.3.	Optimizing C:N ratio for maximum cellulase production	70
4.1.4.4.	Correlations for all optimization results	74
4.1.5.	Saccharification	81
4.1.5.1.	Optimizing saccharification in test tubes	82
4.1.5.1.1.	Correlation of saccharification % against each pH value and temperature degree	85
4.1.5.2.	Saccharification in flasks	88

4.1.5.2.1.	Optimizing saccharification	88
4.1.6.	Fermentation test in bottles	92
4.1.6.1.	Fermentation efficiency in bottles as affected by initial pH	92
4.1.6.2.	Correlations of ethanol fermentation efficiency with initial pH values and fermentation period in hours in bottles	97
4.1.6.3.	Rates of ethanol production in fermentation bottles	99
4.1.7.	Fermentation tests in fermenter	102
4.1.7.1.	Saccharified RS fermentation in fermenter	102
4.1.7.2.	Rate of ethanol production (g/fermenter/hr)	105
4.1.8.	Comparing fermentation efficiencies in bottle and fermenter at pH 6	107
4.1.9.	The genetic identification of isolate 516	109
4.1.10.	GC mass results	111
5.	Discussion	113
5.1.	Rice straw delignification	113
5.2.	Cellulase production	113
5.3.	Fungal fermentation efficiency	114
5.4.	Cellulase optimized production	114
5.5.	Saccharification	116
5.6.	Fermentation by yeast (SSF)	117
5.7.	Isolate 516 genetic identification	119
5.8.	GC-MS analysis	120
6.	Summary	121

7.	References	126
	Arabic summary	1

List of Tables

No.	Tables	Page
Table 1	Cellulytic activities for the 37 isolates and strains measured as Fpase (LSD $0.05 = 460.891$).	32
Table 1A	Cellulytic activities for 2 strains measured as Fpase	32
Table 1B	Cellulytic activities for 6 isolates from ARC soil measured as Fpase	32
Table 1C	Cellulytic activities for 9 isolates from mangrove soil measured as Fpase	33
Table 1D	Cellulytic activities for 20 isolates from composts measured as Fpase	34
Table (2)	Fermentation ability of the most cellulytic active five fungal candidates	41
Table (3)	Optimizing Initial pH value for maximum cellulytic activity	46
Table (4)	Variations in pH values during 9 days of cellulase production	51
Table (5)	Optimizing N source for maximum FPase production	60
Table (6)	Cross comparison between maximum cellulytic activities achieved by fungal candidates in accordance to optimum N source	68
Table (7)	Optimizing C/N ratio for maximum cellulase production	71
Table (8)	Correlations of all optimization results	76
Table (9)	Saccharification of RS (2%) in accordance to temperature and pH values by lyophilized enzyme (25U/test tube)	83

Table (10)	Correlation of Sacch % against each pH value and temperature degree	86
Table (11)	Optimizing saccharification of RS (1g/70ml or 1.43%) in flasks by lyophilized enzyme (25U/flask) from 516 isolate	89
Table (12)	Fermentation efficiency in bottles as affected by initial pH	93
Table (13)	Rates of ethanol production during fermentation in bottles	100
Table (14)	Fermentation efficiency and rate of ethanol production in 2L fermenter	103
Table (15)	GC mass spectrum peak list	111

List of Figures

No.	Figures	Page
Figure 1A	Cellulytic activities for 2 strains measured as Fpase	36
Figure 1B	Cellulytic activities for 6 isolates from ARC soil measured as Fpase	36
Figure 1C	Cellulytic activities for 9 isolates from mangrove soil measured as Fpase	37
Figure 1D	Cellulytic activities for 20 isolates from composts measured as Fpase	38
Figure (2)	Fermentation ability of the most cellulytic active five fungal candidates. Letters referring to ranks.	42
Figure (3)	Optimizing initial pH value for maximum cellulytic activity illustrated with variations in pH values during 9 days of cellulase production. Correlations between cellulytic activities (Fpase) and production period (Days) under each initial pH value were presented.	57
Figure (4)	Correlations between cellulase activities (Fpase) for each isolate under initial pH value and changes happened in each initial pH value during the 9 days of cellulase production.	58
Figure (5)	Optimizing N source for maximum Fpase production	67
Figure (6)	Cross comparison between maximum cellulytic activities achieved by fungal candidates in accordance to relative production period in days and optimum N source	69

Figure (7)	Optimizing C:N ratio for maximum cellulase production	73
Figure (8A)	Correlation1 of FPase for pH parameter and 9 days period for each isolate.	77
Figure (8A)	Correlation1 of FPase for nitrogen source parameter and 9 days period for each isolate.	78
Figure (8A)	Correlation1 of FPase for C:N ratio parameter and 9 days period for each isolate.	79
Figure (8B)	Correlation2 under each isolate including its maximum FPase activities against its 4 initial pH values (blue) and its 5 C/N ratios (brown)	80
Figure (9A)	217 lyophilized cellulases optimized activity measured as saccharification efficiency %	84
Figure (9B)	516 lyophilized cellulases optimized activity measured as saccharification efficiency	84
Figure (10)	Correlation of saccharification % against each pH value and temperature degree in test tubes	87
Figure (11A)	Saccharification of RS (1g/70ml or 1.43%) in flasks by lyophilized enzyme from isolate 516 (25U/flask) at 40°C and pH 6	90
Figure (11B)	Saccharification of RS (1g/70ml or 1.43%) in flasks by lyophilized enzyme from isolate 516 (25U/flask) at 50°C and pH 7	90
Figure (11C)	Correlation of saccharification % against each pH value and temperature degree in flasks	91
Figure (12A)	Effect of initial pH values on fermentation efficiency in bottles	96
Figure (12B)	Correlations of ethanol fermentation efficiency with pH initial values and fermentation period in bottles	98
Figure (13)	Rate of ethanol production in fermentation bottle	101
Figure (14A)	Fermentation efficiency % in 2L fermenter	104
Figure (14B)	Rate of ethanol production (g/fermenter/hr)	106

Figure (15)	Comparing fermentation efficiencies in bottle and fermenter at pH 6	108
Figure (16)	The first of 1 000 equally most parsimonious trees obtained from a heuristic search (1000 replications) of Aspergillus neoellipticus isolate Am 1 (in blue color) compared to other closely similar ITS sequences belonging to genus Aspergillus section Fumigati in GenBank. Bootstrap support values for ML/MP \geq 50% are indicated above/below the respective nodes. The nodes lacking bootstrap support (<50%) are marked with (-). The tree is rooted to Aspergillus terreus CBS 129264	110
	as outgroup (in red color).	
Figure (17)	GC-MS Spectrum of sample compared to that of ethanol reference from in Wiley and NIST Mass Spectral Library data.	112

List of Slides

No.	Slides	Page
1	Strains used	28
2	Isolates from ARC soil	28
3	Isolates from mangrove soil	29
4	Isolates from composts	30

6.Summary

Several fungal candidates were investigated for their cellulytic activities including two strains *Trichoderma viride* (NRRL1698) and *Aspergillus terreus* (NRRL260), isolates from soil at Agricultural Research Center, mangrove soil and compost samples.

Cellulytic activity of isolates and strains

All fungal candidates found to possess cellulytic activities using treated rice straw (RS) all over the 12 days of production and mostly achieved their maximum cellulytic activity at the end, of which strain NRRL1698 and isolates 516, 217, 504 and 517were the most promising fungal candidates.

Optimizing cellulase production

Cellulase production by any of the fungal candidates was subjected to successive optimization studies. The five fungal candidates 217, NRRL1698, 504, 516 and 517 achieved their maximum cellulytic production statistically after 5 days to be 7220U, 8124U), 7487U, 6203U and 7856U, at pH values of 5, 4, 4, 6 and 4, respectively. Exceptionally, both fungal candidates 504 and 517 achieved their maximum cellulytic production not only at pH 4 but also at pH 5, while 516 achieved its maximum cellulytic production at both pH 6 and 7.

The optimization of N source included studying the impact of two inorganic and two organic types on cellulase production. All fungal candidates achieved their maximum cellulytic activities statistically using organic nitrogen sources than inorganic ones, as isolates 217 and 517 recorded their best cellulytic activities using beef extract to be 7065U and 6842), strain NRRL1698 and isolate 516 recorded their best cellulytic activities using yeast extract to be 6499U and 8495U, while isolate 504 recorded its best cellulytic activities using either yeast or beef extracts to be 6293U and 6264U, respectively.

Saccharification

As both isolates 217 and 516 proved their superiority among other fungal candidates as efficient cellulase producers, their cellulases were tested for their efficiency in saccharifying treated rice straw (RS).

Optimizing saccharification in test tubes

Saccharification of RS was much better increasing by incubation period progressing on. As emphasized by statistical analysis the cellulases produced by isolate 217 maximum saccharification was better with pH 6 and 7 than with pH 4 at 40°C, while it was better with pH 5 than pH 6 and 7 at 50°C, proving that the cellulases preferred acidic pH at higher incubation temperature and neutral pH at lower temperature. On the other hand, the cellulase produced by isolate 516 was superior in saccharification results according to statistical analysis at pH 7 and temperature 50°C, followed by pH 6 at both temperatures 40°C and 50°C. Depending on those results, the cellulases produced isolate 516 proved to be more superior than that produced by isolate 217 in saccharification of treated RS.

Saccharification in flasks

The saccharification % of RS at 40° C / pH=6 fluctuated during incubation period achieving its highest result to be 72.19 % after 4 days and increased by 4.7 times compared to that in the test tube test. On the other hand, the saccharification % increased at the end of incubation period recording 89.11% that leveled up saccharification to 5.4 times compared to that achieved in previous test tube test.

Fermentation efficiency in bottles as affected by initial pH

Fermentation efficiency % increased parallel to fermentation period under each pH value, where it didn't exceed 13% up till 45 hr under both pH values 4 and 5, achieving their maximum after 48 hr to be 79.4 and 98.1 %, respectively. Fermentation efficiency % at pH=6 exceeded 50% after 30 hr and reached after 48 hr to be 99.2% where its ethanol yield was close to the ideal theoretical yield.

Rates of ethanol production in fermentation bottles

The production rate after 1 hr recorded 1.212, 1.013 and 3.001 g ethanol/bottle/hr declining afterwards it fluctuated to give occasional losses in ethanol produced where negative production rates appeared and finally achieving 2.358, 2.917 and 0.652 g ethanol/bottle/hr at the end of fermentation period, under pH values of 4, 5 and 6, respectively. It was an obvious increase in production rates under pH 4 and 5 nearly by 200% and 290%, respectively, comparing first hour and final 48 hr fermentation rates. Under pH 6 the first hour fermentation rate decreased by more than 78%, regardless to the accumulation final results.

Fermentation tests in fermenter

The fermentation efficiency in the first day achieved 64% and then decreased down till 4 hr after which it continued increasing up to 84% at 8 hr. In the second day an obvious decrease down to 63% followed by fluctuating increase achieving its maximum at 29 hr with a final fermentation efficiency of 100% after 48 hr.

Rate of ethanol production (g/fermenter/hr)

The rate of ethanol production spotted on the apparent loss in ethanol specifically after 2, 4, 24 27 30 and 48 hrs. Never the less, the fluctuation prolonged the accumulation period needed to achieve the 100% fermentation efficiency after 48 hr.

The comparison of fermentation efficiencies of reducing sugar by *S. cerevisiae* in both the 200ml fermentation bottles and 2L fermenter was crucial to emphasize the effect of fermentation volume and accordingly the effect of S. cerevisiae inoculum size on this process. Fermentation efficiency in fermenter was higher than that in fermentation bottle under the same fermentation conditions. This made the ethanol harvesting during fermentation period more feasible from fermenter than bottles, if it was intended to be used.

The genetic identification of isolate 516

Sequences of fungal isolate 516 designated as Am1 in this study were assembled using DNASTAR computer package (version 5.05). Assembled sequence of isolate Am1 was uploaded to GenBank as OM760501. The closely similar sequences to Aspergillus: section Fumigati including sequences of type and ex-type species were downloaded from GenBank. The isolate AM 1 occupied the same branch as *Aspergillus neoellipticus* ATCC 16903 (type strain) with 100% (562/562) similarity between both species. As a result, this isolate was identified as *Aspergillus neoellipticus*.

GC mass results

Fermentation final sample was assessed qualitatively by GC-MS analysis, as the constituents in the mass spectrum fragmentation pattern obtained by electron ionization (EI) were compared with those stored in Wiley and NIST Mass Spectral Library data. Cation fragments appearing at specific m/z segmented from the main parent molecule by losing specific part. The comparative spectrum proved that the final product was ethyl alcohol.