

Genetic Improvement of Some Tomato Genotypes for Abiotic Stress Tolerance in Egypt

By

Noha Mohamed Saad Mohamed Sheded

B. Sc., Agricultural Science,

Faculty of Agriculture, Benha Univ., 2007

M. Sc., Agricultural Science,

Faculty of Agriculture, Benha Univ., 2016

A THESIS

Submitted in Partial Fulfillment of The

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

IN

AGRICULTURAL SCIENCEs

(GENETICS AND GENETIC ENGINEERING)

GENETICS AND GENETIC ENGINEERING DEPARTMENT

FACULTY OF AGRICULTURE, MOSHTOHOR

BENHA UNIVERSITY

2022

ABSTRACT

The development of a few exceptional new tomato varieties is a substantial breeding challenge. The present experiment was performed to classify best combiner parents and cross combinations for developing hybrids for quality components in tomato under drought stress (E2) compared with irrigated control (E1), using half diallel analysis for six parents and their fifteen hybrids. The parental genotypes are *Solanum pimpenillifolium* (LA:411) and five cultivated genotypes *Solanum lycopersicum*, i. e., Edkawi, Super Marmande, Super Strain B, Castle Rock and Peto 86 for some characters, i. e., length of fruit (cm), fruit diameter (cm), fruit shape index, locules number, average fruit weight (g), fruit flesh thickness (cm), fruit firmness (g/_{3mm}), and total soluble solid (TSS) as a metric of fruit maturity (Brix).

The results indicated that heterosis over mid parent gave significant values in most crosses, i. e., the hybrid Peto $86 \times LA$:411for length of fruit, fruit diameter, fruit flesh thickness, the hybrid Edkawi \times Super Marmande for fruit firmness and TSS and the hybrid Edkawi \times Super Strain B for average fruit weight. While, the hybrid Edkawi \times Super Marmande for length of fruit, fruit shape index, fruit firmness and total soluble solid gave significant values for heterosis over better parent. Also, these hybrids showed high values for specific combining ability (SCA). Based on the general combining ability (GCA) effects, the best combiners were the parental genotypes LA411 for total soluble solid, Edkawi for fruit diameter, locules number and average fruit weight and Peto 86 for length of fruit, fruit flesh thickness and fruit firmness.

On the other hand, a molecular study, used ten SSR primers for drought tolerance on the same parents and their fifteen crosses in this study. Five primers were successful and showed positive and negative markers for drought tolerance. Genetic diversity using SSR data was estimated to be between 0.485 and 0.947, while there was very high genetic similarity (0.999) between (F18 and F17) (super Marmande x LA:411 and super Marmande x Edkawi) respectively. In conclusion, LA:411 and Edkawi could be good source of drought tolerance. Breeding and selection for drought-tolerant genotypes is a significant strategy for addressing this challenge.

Keywords: half diallel; GCA & SCA effects; abiotic stress; drought tolerant; *Solanum lycopersicum*; *Solanum pimpenillifolium*; SSR Markers.

CONTENTS

Title	page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	7
3. MATERIALS AND METHODS	15
4. RESULTS AND DISCUSSION	29
5. SUMMARY	62
6. REFERENCES	66
ARABIC SUMMARY	-

LIST OF TABLES

No.	Title	Page
1	Table 1: Germplasm Resources	16
2	Table 2: Form of the analysis of variance and	
	expectations of mean squares of varince and	20
	covariance	
3	Table 3: Form of the analysis of variance of the	
	diallel mating design and expectations of mean	23
	squares	
4	Table 4: List of SSR markers	28
5	Table 5.a: Mean squares for analysis of variance	
	of tomato genotypes for the characters: fruit	
	length, fruit diameter, fruit flesh thickness, locules	
	number fruit shape index, locules number, fruit	30
	shape index and average fruit weight under	
	irrigated control (E1) and drought stress (E2)	
	conditions.	
6	Table 5.b: Mean squares for analysis of variance	
	of tomato genotypes for the characters: fruit	
	length, fruit diameter, fruit flesh thickness, locules	31
	number fruit shape index, and average fruit	
	weight under combind (E12) conditions.	
7	Table 6: Mean performance of tomato genotypes	
	for the characters: fruit length, fruit diameter, fruit	
	flesh thickness, locules number, fruit shape index,	35
	fruit firmness, total soluble solids and average	
	fruit weight.	

No.	Title	Page
8	Table7.a:Better-parentheterosis(%)	
	calculated for the 15 F_1 tomato crosses for the	
	characters: fruit length, fruit diameter, fruit	
	flesh thickness, Locules number and fruit	38
	shape index, under irrigated control (E1),	
	drought stress (E2) and combined (E12)	
	conditions.	
9	Table7.b:Better-parentheterosis(%)	
	calculated for the 15 F_1 tomato crosses for the	
	characters: fruit firmness, total soluble solids	30
	and average fruit weight, under irrigated	57
	control (E1) , drought stress (E2) and	
	combined (E12) conditions.	
10	Table8.a:Mid-parentheterosis(%)	
	calculated for the 15 F_1 tomato crosses for the	
	characters: fruit length, fruit diameter, fruit	
	flesh thickness, Locules number and fruit	42
	shape index, under irrigated control (E1),	
	drought stress (E2) and combined (E12)	
	conditions.	
11	Table 8.b: Heterosis of 15 F_1 tomato crosses	
	for the characters: fruit firmness, total soluble	
	solids and average fruit weight, under	43
	irrigated control (E1), drought stress (E2) and	
	combined (E12) conditions.	

No.	Title	Page
12	Table 9.a: Mean squares of general and specific	
	compining ability for the characters: fruit	
	length, fruit diameter, fruit flesh thickness,	45
	Locules number and fruit shape index, under	43
	irrigated control (E1) and drought stress (E2)	
	conditions.	
13	Table 9.b: Mean squares of general and specific	
	compining ability for the characters: fruit	45
	firmness, total soluble solids and average fruit	73
	weight, under combind (E12) conditions.	
14	Table 10.a:General combining ability of	
	tomato genotypes for the characters: fruit	
	length, fruit diameter, fruit flesh thickness,	48
	locules number and fruit shape index. under	-10
	irrigated control (E1), drought stress (E2) and	
	combined (E12) conditions.	
15	Table 10.b:General combining ability of	
	tomato genotypes for the characters: fruit	
	firmness, total soluble solids and average fruit	49
	weight under irrigated control (E1), drought	
	stress (E2) and combined (E12) conditions.	
16	Table 11.a:Specificcombiningabilityof	
	tomato genotypes for the characters: fruit	
	length, fruit diameter, fruit flesh thickness,	51
	locules number and fruit shape index. under	51
	irrigated control (E1), drought stress (E2) and	
	combined (E12) conditions.	

No.	Title	Page
17	Table 11.b: Specific combining ability of	
	tomato genotypes for the characters: fruit	
	firmness, total soluble solids and average fruit	52
	weight, under irrigated control (E1), drought	
	stress (E2) and combined (E12) conditions.	
18	Table 12.a: Genetic variance components and	
	heritability for the characters: fruit length, fruit	
	diameter, fruit flesh thickness, locules number	54
	and fruit shape index. under irrigated control	34
	(E1), drought stress (E2) and combined (E12)	
	conditions.	
19	Table 12.b: Genetic variance components and	
	heritability for the characters: fruit firmness,	
	total soluble solids and average fruit weight,	55
	under irrigated control (E1), drought stress (E2)	
	and combind (E12) conditions.	
20	Table 13: Molecular diversity of 21 tomato	
	genotypes as measured by the number of alleles,	58
	allele frequency, polymorphism %, and	30
	polymorphic information content.	
21	Table14:Similarityvalue(Pairwise	
	comparison) of tomato genotypes (5 Solanum	61
	Lycopersicon, 1 Solanum pimpinellifolium and	UI
	their 15 F ₁ crosses) based on SSR data.	

List of Figures

No.	Title	Page
1	Fig. 1: parental genotypes fruits P1: <i>Solanum pimpenillifolium</i> (LA:411), <i>Solanum lycopersicum</i> , i. e., P2: Edkawi, P3: Super Marmande, P4: Super Strain B, P5: Castle Rock and P6: Peto 86.	18
2	Fig. 2: hybrids genotypes fruits P1: <i>Solanum pimpenillifolium</i> (LA:411), <i>Solanum lycopersicum</i> , i. e., P2: Edkawi, P3: Super Marmande, P4: Super Strain B, P5: Castle Rock and P6: Peto 86.	34
3	Fig. 3: Amplification Profiles of the six tomato genotypes and their crossesas revealed by SSRs. A, B, C, D and E show the allelic segregation of the SSR markers rbah21g15, bah55b22 bah17g14, ABC04320 and Bmag382, respectively, in the analyzed tomato genotypes and their crosses. Lanes 1 to 21 represent LA411, Edkawi, Super marmande, Super strain B, Castel rock, Peto 86, p86xpimp, p86xedk, p86xsm, p86xssb, p86xcr, edkxpimp, smxpimp, smxedk, ssbxsm, ssbxedk, ssbxpimp, crxpimp, crxedk, crxsm, crxssb, respectively; M, DNA marker was size (100-bp).	57
4	Fig. 4 : Dendogram cluster analysis between six tomato genotypes and their 15 hybrids using SSR data.	60

LIST OF ABBREVIATIONS

Н	Heterosis
MP	Mid-Parent
HP	High Parent
$\sigma^2 g$	genotypic variance.
$\sigma^2 s$	Pheno. variance.
$\sigma^2 E$	environmental variance.
H2ns	heritability in narrow sense.
H2bs	heritability in broad sense.
D.d	degree of dominance.
GCA	general combining ability
SCA	specifice combining ability
SSRs	Short sequance repeats.
PAGE	polyacrylamide gel electrophoresis.
PCR	Polymerase Chain Reaction.
QTLs	Quantitative trait loci.
DNA	Deoxy ribose Nuclic Acid
RCBD	Randomized Complete Block Design
ARC	Agriculture Research Center
DRC	Desert Research Center