DETECTING OF RESISTANCE IN CERTAIN FIELD STRAINS OF PINK BOLLWORM TO SOME INSECTICIDES AND THE ROLES OF BIOCHEMICAL AND MOLECULAR FACTORS

By

RABAB ABDEL AZIZ DESOUKI ALLAM

B. Sc. Agric. Sc., (Pesticide), Fac. of Agric., Ain Shams University, 2000 M. Sc. Agric., (Pesticide), Fac. of Agric., Ain Shams University, 2007

> A Thesis Submitted in Partial Fulfillment Of The Requirements for the Degree of

DOCTOR OF PHILOSOPHY in Agricultural Sciences (Pesticide)

Department of Plant Protection Faculty of Agriculture Ain Shams University

ABSTRACT

Rabab Abdel Aziz Desouki Allam: Detecting of resistance in certain field strains of pink bollworm to some insecticides and the roles of biochemical and molecular factors. Unpublished Ph.D. Thesis, Department of Plant Protection, Faculty of Agriculture, Ain Shams University, 2022.

The efficiency of certain conventional insecticides (Chlorpyrifos & Lambda-cyhalothrin) and nanoparticle compounds (Silica, Aluminum and Chitosan) against the newly hatched as well as the 4th larvae of the pink bollworm laboratory strain, was evaluated. Also, the study involved monitoring resistance (%) in field populations collected from Fayoum Oalubia, Behira and Kafr-Elsheikh Governorates to the conventional and nanoparticle compounds by using the discriminating concentrate technique for development of selected resistance strains against conventional insecticides. The relationship between resistance (%) and some hydrolyzing and glutathione-S- transferases in the 4th instar larvae collected from different Governorates. The genetic diversity of pink collected from bollworm field populations different Egyptian Governorate, and the insecticide – resistance gene expression quantitation using real-time PCR were evaluated. Lambda Cyhalothrin was the highest toxic compound against the 1st and 4th instar larvae. The nanoparticle formulations of natural inorganic ore compounds were proved to be highly toxic to both instar larvae of *Pectinophora gossypiella* lab – strain, than each of traditional natural ore products. The nano chitosan was more efficient than traditional form. The resistance (%) was varied from Governorate to anther for the same tested compound by using discriminating concentration (LC₉₉) of certain compounds. The hydrolytic enzymes ie, phosphatase, non-specific β estrases as well as glutathione stransferases were highly activate in investigated field populations strains of *Pectinophora gossypiella* than the laboratory, Moreover variations in the levels of enzyme activity from one Governorate to another for the same enzyme was recorded. There were highly correlations between monitoring resistance (%) in the field populations, enzymatic assays activity as well as fingerprints of the RAPD-PCR analysis of the extracted DNA samples using four primers (B12, P13, C16 and C 18). The relative gene expression values among the two target genes, showed a higher expression level for *BtR* than *Cad1*

Key words: *Pectinophora gossypiella*, Discriminating concentration, Resistance, Tolerance, Biochemical aspects, (RAPD) PCR and Gene expression.

CONTENTS

	Page
LIST OF TABLES	V
LIST OF FIGUERS	VIII
1.INTRODUCTION.	1
2.REVIEW OF LITRATURE.	4
1-Susceptibility of some insect pests to conventional	
insecticides.	4
2- Efficiency of some naturally ore , Chitosan biopolymers and	
their nanoparticle formulations against certain insect-pests.	8
3- Monitoring of insecticidal resistance in certain field	
population by using discriminating dose technique.	14
4- Development of the pink bollworm selected resistance	
strains to certain insecticides in lab-conditions.	17
5- The role of enzymatic activity in mechanisms of resistance	
in insect strains to certain insecticides.	18
6- Identification and detection of genetic diversity of insect	
field population	
7- Insecticide-resistance gene expression quantitation using	
Real-time PCR	31
3.MATERIAL AND METHODS	35
3.1. Insect pest	35
3.1.1. Pectinophora gossypiella, laboratory strain	35
3.1.2. P. gossypiella, field strains	35
3.1.3 Rearing technique:	35
3.2. Insecticide used	36
3.2.1. Natural inorganic ore Silica and Aluminum; and organic	
chitosan:	36
3.2.2. Nano formulation	37
3.2.3. Conventional insecticides	37
3.3. Methotology	39

3.3.1. Determination of the susceptibility of the 1 st and 4 th	
instar larvae of the pink bollworm, Pectinopphora	
gossypiella laboratory strain to the tested compounds	39
3.3.2. Test procedures for monitoring the insecticide resistance	
for pectinophora gossypiella field population by using	
discriminating concentration technique	39
3.3.3. Lab- technique for development of selected resistance	
strains of the pink bollworm, Pectinophora	
gossypiella to certain insecticides	41
3.3.4. Biochemical aspects	41
3.3.4.1. Preparation of the insect homogenates	41
3.3.4.2. Determination of enzyme activity	42
3.3.4.2.1 Determination of alkaline phosphatase activity:	42
3.3.4.2.2 Determination of Acetylcholin-esterase (AChE)	
activity	42
3.3.4.2.3. Determination of non-specific esterase's activity	43
3.3.4.2.4. Determination of glutathione -S- transferase:	43
3.3.5. Molecular genetic technique	44
3.3.5.1. Identification and detection of genetic diversity of	
insect field population	44
3.3.5.1.1. DNA extraction	44
3.3.5.1.2. Polymerase Chain Reaction (PCR)	45
3.3.5.1.3. Similarity index	46
3.3.5.1.4. Statistical analysis	46
3.3.5.2. Insecticide-resistance gene expression quantitation	
using real-time PCR	47
3.3.5.2.1. RNA extraction	47
3.3.5.2.2. cDNA synthesis	49
3.3.5.2.3. Real time PCR	50
3.3.5.2.4. Relative expression	51
3.3.5.2.5. Fold change	52
3.3.5.2.6. Statistical analysis	52

 4. RESULTS AND DISCUSSION 54 4.1. Efficiency of certain conventional toxicants and some naturally compounds and their nanoparticler against the
naturally compounds and their nanoparticler against the
1 st and 4 th instar larvae of the pink bollworm,
Pectinophora gossypiella, laboratory strain 54
4.1.1. Comparison on basis of LC_{50} and LC_{90} values 54
4.1.2. Comparison on basis of toxicity index values58
4.1.3. The slope values of toxicity lines, LC_{90}/LC_{50} ratio and
relative potency levels against both 1 st and 4 th instar
larvae of <i>P. gossypiella</i> 64
4.2. Monitoring of insecticidal resistance level in certain the
field population of pink bollworm by using
discriminating concentration technique 73
4.3. Development of selected resistance strains of the pink
bollworm to certain insecticides in lab – conditions 88
4.4. Enzymatic activity in different strains of the pink
bollworm, Pectinophora gossypiella collected from
different Governorates 95
4.4.1. Alkaline phosphatase activity 95
4.4.2. Acetylcholine-esterase activity (AchE.) 98
4.4.3. Glutathion - S - transferases Activity (GSTs) 101
4.4.4. Nonspecific Beta esterase's activity 104
4.5. Identification and detection of genetic diversity of certain
pinkbollworm, <i>P. gossypiella</i> (Saunders) field population 111
4.5.1.Total number and size of RAPD-PCR fragments
generated by arbitrary primers in different strains of <i>P</i> .
gossypiella larvae using primer B12 111
4.5.2. Total number and size of RAPD-PCR fragments
generated by arbitrary primers in different strains of <i>P</i> .
gossypiella 4 th instar larvae using primer P13 117

III

4.5.3.Total number and size of RAPD-PCR fragments		
generated by arbitrary primers in different strains of P.		
gossypiella 4 th instar larvae using primer C16.	122	
4.5.4.Total number and size of RAPD-PCR fragments		
generated by arbitrary primers in different strains of P.		
<i>gossypiella</i> 4 th instar larvae using primer C18	125	
4.6. Insecticide-resistance gene expression quantitation using		
Real- time PCR.	135	
4.6.1. Gene expression of <i>BtR</i> and <i>Cad1</i> by using Real - time		
(PCR) in pink bollworm, Pectinophor gossypiella		
field population.	135	
5 CMALLDX		
5. SMMARY		
6.REFFERENCES		

LIST OF TABLES

	LIST OF TABLES	
Fig.	Title	Page
No.		
1	List of the primer names and their nucleotide sequences	
	used in the study	46
2	Forward and reverse primers sequence for primers used in	
	qPCR.	51
3	The thermal cycler condition used during real time PCR.	52
4	Susceptibility status of the 1 st instar larvae of the pink	
	bollworm, P. gossypiella laboratory strain to used	
	compounds.	55
5	Susceptibility status of the 4 st instar larvae of the pink	
	bollworm <i>P. gossypiella</i> laboratory strain to used	
_	compounds.	57
6	Toxicity index values of the tested compounds against the	
	1 th instar larvae of the pink bollworm, <i>P. gossypiella</i>	60
-	laboratory strain.	60
7	Toxicity index values of the tested compounds against the	
	4 th instar larvae of the pink bollworm <i>P. gossypiella</i>	62
8	laboratory strain. Slope & LC_{90} / LC_{50} and potency levels of the tested	02
0	compounds against the 1^{th} instar larvae of the pink	
	bollworm <i>P. gossypiella</i> laboratory strain	65
9	Slope & LC_{90} / LC_{50} and potency levels of the tested	05
-	compounds against the 4 th instar larvae of the pink	
	bollworm <i>P. gossypiella</i> laboratory strain	68
10	Response of the 4 th instar larvae of <i>Pectinophora</i>	
	gossypiella collected from different governorate acourding	
	to discriminating concentrate of Pyriban.A	74
11	Response of the 4 th instar larvae of <i>Pectinophora</i>	
	gossypiella collected from different governorate to	
	discriminating of Lambda cyhalothrin, Lambda star.	76

12	Response of the 4 th instar larvae of Pectinophora	
	gossypiella collected from different governorate to	
	discriminating of Chitosan nanoparticles.	78
13	Response of the 4 th instar larvae of Pectinophora	
	gossypiella collected from different governorate to	
	discriminating concentrate of Aluminum nanoparticles.	80
14	Response of the 4 th instar larvae of Pectinophora	
	gossypiella collected from different governorate to	
	discriminating concentrate of Silica nanoparticles	82
15	Development OF resistance in the 4^{th} instar larvae of <i>P</i> .	
	gosssypiella to the action of Pyriban A.	89
16	Developed resistance in the 4^{th} instar larvae of P .	
	gosssypiella to the action of Lambda star.	92
17	Alkaline phosphatase activity in the 4^{th} instar larvae of <i>P</i> .	
	gossypiella homogenates of different field population	
	collected from different Governorates.	96
18	Acetylcholinesterase activity in the 4^{th} instar larvae of <i>P</i> .	99
19	Glutathion S- transsferase in the 4^{th} instar larvae of P.	
	gossypiella homogenates of different field colony strains	
	collected from different Governorates.	102
20	Glutathion S- transsferase in the 4^{th} instar larvae of P.	
	gossypiella homogenates of different field colony strains	
	collected from different Governorates	105
21	Ditribution of Glutathion S- transsferase in the 4 th instar	
	larvae of P. gossypiella homogenates of different field	
	colony strains collected from different Governorates	113
22	Total number and size of RAPD-PCR fragments generated	
	by arbitrary primers in different strains of P.gossypiella	
	larvae using primer B12.	116
23	Estimation of similarity polymorphism in field and	
	laboratory strains of P. gossypiella using primer B12.	117

VI

24	Estimated similarity index between five strains of P.	
	gossypiella 4 th instar larvae using primer B12.	119
25	Total number and size of RAPD-PCR fragments generated	
	by arbitrary primers in different strains of P.gossypiella	
	larvae using primer P13.	121
26	Estimation of similarity polymorphism in field and	
	laboratory strains of P. gossypiella using primer P13	122
27	Estimated similarity index between five strains of P.	
	gossypiella larvae using primer P13.	123
28	Total number and size of RAPD-PCR fragments generated	
	by arbitrary primers in different strains of P.gossypiella	
	larvae using primer C 16.	124
29	Estimation of similarity polymorphism in field and	
	laboratory strains of P. gossypiella using primer C16	125
30	Estimated similarity index between five strains of P.	
	gossypiella larvae using primer C16.	126
31	Total number and size of RAPD-PCR fragments generated	
	by arbitrary primers in different strains of P. gossypiella	
	larvae using primer C 18.	127
32	Estimation of similarity polymorphism in field and	
	laboratory strains of P. gossypiella using primer C18	128
33	Estimated similarity index between five strains of P.	
	gossypiella larvae using primer C18.	129
34	Estimated mean similarity index values between five	
	strains of P. gossypiella larvae as average of using four	
	different primers.	137

LIST OF FIGURES

Table	Title	Page
No		
1	Toxicity line of susceptibility status of the 1 st instar	
	larvae of the pink bollworm.P. gossypiella laboratory	
	strain to used compounds	56
2	Toxicity line of susceptibility status of the 4st instar	
	larvae of the pink bollworm P. gossypiella laboratory	
	strain to used compounds	58
3	Toxicity index values of the tested compounds against	
	the 1 th instar larvae of the pink bollworm <i>P. gossypiella</i>	
	laboratory strain	61
4	Toxicity index values of the tested compounds against	
	the 4 th instar larvae of the pink bollworm <i>P. gossypiella</i>	
	laboratory strain.	63
5	potency levels of the tested compounds against the 1 th	
	instar larvae of the pink bollworm P. gossypiella	
	laboratory strain.	66
6	potency levels of the tested compounds against the 4 th	
	instar larvae of the pink bollworm P. gossypiella	
	laboratory strain	69
7	Response of the 4 th instar larvae of <i>Pectinophora</i>	
	gossypiella collected from different governorate to	
0	discriminating of Pyriban.	75
8	Response of the 4 th instar larvae of <i>Pectinophora</i>	
	gossypiella collected from different governorate to	
0	discriminating of pyriban	75
9	Response of the 4 th instar larvae of <i>Pectinophora</i>	
	gossypiella collected from different governorate to	77
	discriminating of Lambda.	77

Response of the 4th instar larvae of *Pectinophora* gossypiella collected from different governorate to discriminating of Lambda star.
 Response of the 4th instar larvae of *Pectinophora* gossypiella collected from different governorate to discriminating of Chitosan nanoparticles.

78

79

81

84

89

- 12Response of the 4th instar larvae of Pectinophora
gossypiella collected from different governorate to
discriminating of Chitosan nanoparticles.80
- **13** Response of the 4th instar larvae of *Pectinophora gossypiella* collected from different governorate to discriminating concentrate of Aluminum nanoparticles.
- Response of the 4th instar larvae of *Pectinophora* gossypiella collected from different governorate to discriminating concentrate of Aluminum nanoparticles.
 82
- Response of the 4th instar larvae of *Pectinophora* gossypiella collected from different governorate to discriminating concentrate of Silica nanoparticles.
 83
- **16** Response of the 4th instar larvae of *Pectinophora gossypiella* collected from different governorate to discriminating concentrate of Silica nanoparticles.
- Dendrogram showing development of resistance in the 4th instar larvae of *P. gosssypiella* to the action of Pyriban A. (Relatively to parent strain G₀)
- Toxicity line associated to development of resistance in the 4th instar larvae of *P. gosssypiella* to the action of Pyriban A.
 90
- Dendrogram showing developed resistance in the 4th instar larvae of *P. gosssypiella* to the action of lambda star. (Relative to parent strain).

IX

20	Toxicity line of developed resistance in the 4 th instar	
	larvae of <i>P. gosssypiella</i> to the action of Lambda star.	93
21	Alkaline phophatase activity in the 4^{th} instar larvae of <i>P</i> .	
	gossypiella homogenates of different field colony strains	
	collected from different Governorates.	97
22	Alkaline phophatase activity in the 4 th instar larvae of <i>P</i> .	
	<i>gossypiella</i> homogenates of different field colony strains	
	collected from different Governorates.	98
23	Acetylcholinesterase activity in the 4^{th} instar larvae of <i>P</i> .	
	gossypiella homogenates of different field population	
	collected from different Governorates.	100
24		100
27	Distribution of acetylcholinesterase activity in the 4 th	
	instar larvae of P. gossypiella homogenates of different	
	field colony strains collected from different	
	Governorates.	101
25	Glutathion S- transsferase in the 4^{th} instar larvae of P.	
	gossypiella homogenates of different field colony strains	
	collected from different Governorates	103
26	Ditribution of Glutathion S- transsferase in the 4 th instar	
	larvae of <i>P. gossypiella</i> homogenates of different field	
	colony strains collected from different Governorates.	104
27	β - asterases activity in the 4 th instar larvae homogenates	104
21	of different field colony strains collected from different	
	Governorates .	106
28	Distribution of β - asterases activity in the 4 th instar	100
20	larvae homogenates of different field colony strains	
	collected from different Governorates .	107
29		107
47	RAPD-PCR produced for different strain of <i>P. gossypilla</i>	111
20	larvae using primer (B12) RAPD PCP produced for different strain of <i>P</i> , assumilla	114
30	RAPD-PCR produced for different strain of <i>P. gossypilla</i>	100
	larvae using primer (P13)	120

31	RAPD-PCR produced for different strain of P. gossypilla	
	larvae using primer (C16)	123
32	RAPD-PCR produced for different strain of P. gossypilla	
	larvae using primer (C18)	127
33	Mean similarity index values between five strains of <i>P</i> .	
	gossypiella larvae as average of using four different	
	primers using RAPD-PCR technique.	130
34	Amplification curves converted to specific cycle	
	threshold for quantifying gene expression levels relative	
	to insecticidal resistance in field population of P.	
	gossypiella, 4 th instar larvae compared to laboratory	
	strain.	135
35	Exponential amplification curves of the RT-PCR assay.	
	The above and below plots represent the <i>BtR</i> and <i>Cad1</i>	
	genes, respectively. The lines represent the fluorescence	
	rate (RFU) absorbed for the amplified DNA quantity	
	each cycle. CT values are determined based on the	
	threshold (green horizontal line).	136
36	The fold-change values based on RT-PCR estimated for	
	two target genes (BtR and Cad1, normalized by rps7) for	
	four biological sampling groups relative to the control	
	group are shown.	138