CHARACTERIZATION OF GENETIC RELATIONSHIP BETWEEN EGYPTIAN AND ITALIAN BUFFALOES POPULATIONS USING MOLECULAR GENETIC TECHNIQUES

By

SARAH GAMAL ALI MOHAMED AL-AZAZI

B.Sc. Agric. Sc., Genetic, Fac. Agric., Ain Shams University, 2005 M.Sc. Agric. Sc., Genetic, Fac. Agric., Ain Shams University, 2012

> A Thesis Submitted in Partial Fulfillment Of The Requirement for the Degree of

DOCTOR OF PHILOSOPHY in Agricultural Sciences (Genetics)

Department of Genetics Faculty of Agriculture Ain Shams University

2022

ABSTRACT

Sarah Gamal Ali Mohamed Al-Azazi; Characterization of Genetic Relationship between Egyptian and Italian Buffaloes Populations Using Molecular Genetic Techniques. Unpublished Ph.D. Thesis, Department of Genetic, Faculty of Agriculture, Ain Shams University, 2022.

Egypt has a significant output deficit in milk and meat, as seen by annual imported milk and meat. Due to the lack of specialized breeds/lines for (meat/milk) and the requirement for national genetic improvement scheme initiatives, Egyptian buffalo production could not cover such a void. As with local cattle crossbreeding, trials for the introduction of foreign breeds of buffalo (crossbreeding with Italian buffalo) were conducted to greatly improve the genetic makeup of Egyptian buffaloes for economic qualities. In this study, the reproductivity, productivity, and milk composition of buffaloes, i.e., a pure Egyptian (PE) line and Egyptian-Italian crossbreeds, were investigated to identify markers for the traits under examination. Ninety-nine dairy buffaloes were used to compare the PE line with the Egyptian–Italian crossbred lines {G1 (25.0%), G2 (50.0%), G3 (62.5%), G4 (75.0%), G5 (87.5%), and G6 (94.0%)respectively. Analysis of farm data showed a significant increase in all traits for the 94.0% crossbred line when compared with the PE line and other Italian crosses. On a molecular level, all investigated buffaloes were genotyped for BB, which meant they were negative for the SnaBI at position 224^225 (TAC^GTA) of the IGF-I regulatory region, and they were genotyped AA-positive for the TaqI at position 47⁴⁸ (T^{CGA}) of IGF-I receptor. In addition, they were positive for the Alu1 restriction site of the leptin gene and gave three products that were 55-, 118-, and 205-bp in length (AG^CT). We conclude that directing additional effort toward the genetic improvement of the Egyptian buffalo using crossbreeding with Italian lines may improve these traits. However, more studies are required before crossbreeding activities can be enhanced on a national level.

Keywords: Egyptian buffalo, Egyptian–Italian buffalo, reproductive and productive performance, leptin, insulin-like growth factor and restriction fragment length polymorphism.

CONTENTS

	Page
LIST OF TABLES	III
LIST OF FIGURES	IV
LIST OF ABBREVIATIONS	VI
INTRODUCTION	1
REVIEW OF LITERATURE	4
1. Buffaloes worldwide	4
2. Buffaloes in the Mediterranean area	9
3. Buffaloes in Egypt	10
4. Buffaloes in Italy (Bufala Mediterranea Italiana)	12
5. Egyptian-Italian buffalo crossbred	14
6. Molecular Characterization	16
6.1. Insulin-like Growth Factor (IGF)	19
6.1.1. Insulin-like Growth Factor-1 (IGF-1)	20
6.1.2. Insulin-like Growth Factor-1Receptor (IGF-1R)	22
6.2. Leptin	23
MATERIALS AND METHODS	28
1. Animals and management	28
2. Studied traits	30
2.1. Reproduction and Production traits	30
2.2. Statistical Analysis	30
3. Molecular Level	30
3.1. DNA Extraction	30
3.2. Agarose gel electrophoresis preparation	32
3.3. Polymerase Chain Reaction (PCR)	32
3.3.1. IGFs Genes	32
3.3.1.1. IGF-1	32
3.3.1.2. IGF-1R	33
3.3.2. Leptin Gene	33
3.4. Restriction fragment length polymorphism (RFLP)	34

3.4.1. IGFs Genes	34
3.4.1.1. IGF-1	34
3.4.1.2. IGF-1R	34
3.4.2. Leptin Gene	34
3.5. sequencing	35
3.5.1. PCR Clean-Up and Gel Extraction	36
3.5.2. Quantification of Amplicon using Nanodrop apparatus	37
3.6. Genetic identity and Sequence analysis	37
RESULTS AND DISCUSSION	38
1. Reproductive and Productive traits	38
2. Molecular Level	43
2.1. IGFs Genes	43
2.1.1. IGF-1 Gene	43
2.1.2. IGF-1R Gene	47
2.2. Leptin Gene	52
SUMMARY	58
REFERENCES	61

LIST OF TABLES

No.		Page
1	Buffalo population and productivity in European and	10
	Near East countries.	
2	Comparison of milk yield between Egyptian buffalo	
	and Egyptian-Italian buffaloes.	15
3	Comparison of milk constituent of Egyptian buffalo	
	and Egyptian- Italian buffaloes.	15
4	Comparison of lysozymes & nitric oxide production in	
	milk between Egyptian buffalo and Egyptian- Italian	
	buffaloes.	15
5	Number of samples and percentage of hybridization	
	(Italian to Egyptian).	28
6	The sequences and information of primers were used	
	in this study	35
7	The Components of PCR Clean-Up and Gel Extraction	
	Kit	36
8	Average reproductive parameters (LSM±SE) of pure	
	Egyptian line compared with Egyptian-Italian	
	crossbred buffalo.	41
9	Average productive parameters and milk composition	
	(LSM±SE) of Egyptian buffalo pure line compared	
	with Egyptian-Italian crossbred buffalo.	42

LIST OF FIGURES

No.		Page
1	Production of buffaloes in Italy from 2003 to 2018	13
2	Production of buffaloes in Egypt from 2003 to 2018	14
3	Percentages (%) of crossbreeding between Egyptian and	
	Italian buffaloes.	29
4	Ethidium bromide-agarose gel for PCR products	
	representing all tested animals for IGF1 gene	
	amplifications.	45
5	Agarose gel for PCR products representing samples from	
	all tested IGF1 gene amplifications. Lane M: marker;	
	lanes 1 & 2: PE; lanes 3 & 4: G1; lanes 5 & 6: G2; lanes	
	7 & 8: G3; lanes 9 & 10: G4; lanes 11 & 12: G5; lanes 13	
	& 14: G6.	45
6	Sequence alignment of the amplified pure Egyptian	
	buffalo IGF-1 gene fragment with the genes of crossbred	
	buffaloes.	46
7	Agarose gel for PCR products representing samples from	
	all tested IGF-1R gene amplifications. Lane M: marker;	
	lanes 1 & 2: PE; lanes 3 & 4: G1; lanes 5 & 6: G2; lanes	
	7 & 8: G3; lanes 9 & 10: G4; lanes 11 & 12: G5; lanes 13	
	& 14: G6.	48
8	Agarose gel for PCR products representing samples from	
	all tested IGF-1R gene amplifications. Lane M: marker;	
	lanes 1 & 2: PE; lanes 3 & 4: G1; lanes 5 & 6: G2; lanes	
	7 & 8: G3; lanes 9 & 10: G4; lanes 11 & 12: G5; lanes 13	
	& 14: G6.	49
9	The electrophoretic pattern was obtained after digestion	
	of the PCR-amplified buffalo IGF1R gene with the Taq1	
	restriction enzyme for all tested animals.	49

10	The electrophoretic pattern was obtained after digestion	
	of the PCR-amplified buffalo IGF1R gene with the Taq1	
	restriction enzyme, representing samples from all tested	
	animals. Lane M: marker; lanes 1 & 2: PE; lanes 3 & 4:	
	G1; lanes 5 & 6: G2; lanes 7 & 8: G3; lanes 9 & 10: G4;	
	lanes 11 & 12: G5; lanes 13 & 14: G6.	50
11	Sequence alignment of the amplified pure Egyptian	
	buffalo IGF-IR gene fragment with the genes of	
	crossbred buffaloes.	51
12	Agarose gel for PCR products representing all tested	
	animals for Leptin gene amplifications.	54
13	Agarose gel for PCR products representing samples from	
	all tested leptin gene amplifications. Lane M: marker;	
	lanes 1 & 2: PE; lanes 3 & 4: G1; lanes 5 & 6: G2; lanes	
	7 & 8: G3; lanes 9 & 10: G4; lanes 11 & 12: G5; lanes 13	
	& 14: G6.	55
14	The electrophoretic pattern was obtained after digestion	
	of the PCR-amplified buffalo leptin gene with the Alu1	
	restriction enzyme for all tested animals.	55
15	The electrophoretic pattern was obtained after digestion	
	of the PCR-amplified buffalo leptin gene with the Alu1	
	restriction enzyme, representing samples from all tested	
	animals. Lane M: marker; lanes 1 & 2: PE; lanes 3 & 4:	
	G1; lanes 5 & 6: G2; lanes 7 & 8: G3; lanes 9 & 10: G4;	
	lanes 11 & 12: G5; lanes 13 & 14: G6.	56
16	Sequence alignment of the amplified pure Egyptian	
	buffalo leptin gene fragment with the genes of crossbred	
	buffaloes.	57

V

LIST OF ABBREVIATIONS

ABBREVIATION	Mean
AI	Artificial insemination
AnGR	Animal Genetic Resources
ANASB	Associazione Nazionale Allevatori Specie
	Bufalfna (Italian Buffalo Breeders Association)
bp	Base pair
DNA	Deoxyribonucleic acid.
DMY	Daily milk yield
EDTA	Ethylenediaminetetraacetic acid
FAO	Food and Agriculture Organization.
FAOSTAT	Food and Agriculture Organization Corporate
	Statistical Database.
g	Gram
GH	Growth hormone.
IGFs	Insulin-like Growth Factors.
IGF-1	Insulin-like Growth Factor 1.
IGF-1R	Insulin-like Growth Factor 1 Receptor.
Kbp	Kilo-base pair
Kg	Kilogram.
KDa	Kilodalton.
L	Liter.
Mbp	Megabase pair.
Mg	milligram.
Mg	Microgram.
μl	Microliter.
μΜ	Micromolar.

P4	Progesterone.
PCR	Polymerase chain reaction.
RFLP	Restriction Fragment Length Polymorphism.
RNase	Ribonuclease.
rpm	Revolutions per minute.
SA	Somatotropic axis
SAS	Statistical analysis system.
SNF	Solids not fat.
SNPs	Single nucleotide polymorphisms.
TMR	Total mixed ration.
TMY	Total milk yield.
UV	Ultraviolet.
VEGF	Vascular endothelial growth factor.