

Assuit University Faculty of Veterinary Medicine Department of Avian and Rabbits Medicine

"Molecular identification of virulence genes of pathogenic Escherichia coli isolated from broiler Chicken"

Thesis presented

By

Hossam Ahmed Abdel Aziz Abdel Ghani

M.V.Sc. (Assiut University, 2018)

To Dept.of Poultry Diseases

For Doctor of Philosophy Degree in Veterinary Medical Sciences

Under supervision of

Prof. Dr. Mostafa A. Shahta

Prof. Emeritus of Avian and Rabbits Medicine Department Faculty of Veterinary Medicine Assuit University

Dr. Omar Ahmed Kamel

Associated Professor of Avian and Rabbits Medicine Department

Faculty of Veterinary Medicine

Assuit University

Dr. Naglaa Mahmoud Ali

Senior Researcher Animal Health Research Institute

Dr. Naglaa Mohamed Hagag

Head of genome research unit, NLQP, Animal health research Institute

2022 Assiut-Egypt

Subjects	Page
I. Introduction	2
II. Review of Literature	
II.1 Colibacillosis	5
II.2 Economic significance	5
II.3 Public health significance	6
II.4 Etiology	8
II.4.1 History	8
II.4.2 Characterization	8
II.4.3 Serological Characteristics of E. coli	9
II.4.4 pathogencity and virulence factors	12
II.4.5. Resistance genes associated with APEC	15
II.4.5.1 Antibiotic resistance genes	15
II.4.5.2 Disinfectant resistance genes	27
II.4.5.2.1 Qac resistance genes	27
II.4.5.3 Biofilm	34
II.5 Transmission	40
II.6 Morbidity and mortality	40
II.7 Problems associated with APEC	41
II.7.1 Localized forms of colibacillosis	41
II.7.1.1 Coliform omphalitis/yolk Sac infection	41
II.7.1.2 Coliform cellulitis	42
II.7.1.3 Swollen head syndrome	43
II.7.1.4 Coliform salpingitis/peritonitis/salpingoperitonitis (SPS)	44
II.7.1.5 Diarrhea	44
II.7.2 Systemic forms of colibacillosis	45
II.7.2.1 Colisepticemia	45

Subjects	Page
II.7.2.1.1 Respiratory-origin colisepticemia	46
II.7.2.1.2 Enteric -origin colisepticemia	46
II.7.2.2 Coligranuloma or Hjarre's disease	47
II.8 Methods for culturing and analyzing of E.coli	47
II.9 Moleculatr typing	48
III. Materials and Methods	
III.1 Sample collection and transportation	51
III.2 Isolation of microorganism	51
III.2.1 Media	51
III.2.2 Reagent	51
III.3 Bacteriological examination	52
III.4 Bacterial identification of enteropathogenic Ecoli	52
III.4.1 Morphological identification	52
III.4.1.1 Microscopical identification	52
III.4.1.2 Motility test	52
III.4.2 Biochemical identification	53
III.4.2.1 Indole test	53
III.4.2.2 Methyl red test	53
III.4.2.3 Voges Praskauer test	53
III.4.2.4 Citrate Utilization test	53
III.4.2.5 Urease test	53
III.4.2.6 Hydrogen sulphide production test	54
III.4.2.7 Gelatin hydrolysis test	54
III.4.2.8 Nitrate reduction test	54
III.5 Serological identification of isolates	54
III.6 Detection of biofilm production	56
III.6.1 Congo red agar method	56
III.7 Antibiotic resistance of isolated E coli	57

Subjects	Page
III.8 Disinfectant susceptibility testing	61
III.9 Materials used for extraction of DNA	61
III.9.1. QIAamp DNA Mini Kit Catalogue no.51304	61
III.9.2 Ethanol 96% Applichem	62
III.10 Equipments and apparatuses used for extraction of nucleic acids	62
III.11 PCR Master Mix used for cPCR	62
III.12. oligonucleotide primers used in cPCR	62
III.13. DNA Molecular weight marker	63
III.13.1 Gene ruler 100 bp DNA ladder	63
III.13.2 Gel Pilot 100 bp plus ladder	63
III.14. Material used for agarose gel electrophoresis	64
III.14.1. Agarose 1.5%	64
III.14.2. Ethedium bromide solution 10 mg / ml	64
III.14.3. Tris borate EDTA (TBE) electrophoresis buffer (1x)	64
III.15. Equipment and apparatuses used in cPCR	65
III.16. Methods	65
III. 16.1. Extraction of DNA	66
III. 16.2. Preparation of PCR Master Mix	66
III. 16.3. Cycling conditions of the primers during cPCR	66
III.16.4. DNA Molecular weight marker	67
III. 16.5. Agarose gel electrophoreses with modification	67
III.17. Experimental Infection:	67
III.18. Experimental design 1	69
III.19 Experimental design 2	69
IV. Results	
V.1 Prevalence of <i>E. coli</i> in broiler chicken	72
V.2 Phenotypic identification of the recovered <i>E. coli</i> isolates	72

Subjects	Page
V.3 Serotyping of isolates	73
V.4 Detection of biofilm production	76
V.5 Prevalence of antimicrobial resistance.	76
V.6 Results of antibacterial susceptibility and resistance patterns of 12 <i>E. coli</i> isolates using MIC test:	79
V.7 Disinfectant Susceptibility Profiles of bacterial isolates.	80
V.7 Detection of virulence and resistance genes in samples of 38 <i>E. coli</i> isolates.	80
V.8 Determining the virulence of avian <i>Escherichia coli</i> Isolates in embryo chicken egg	86
V.9 Results of experimental infection	88
V. Disscussion	92
VI. Summary and Conclusion	102
VII. References	105
Arabic Summary	١

LIST OF TABLES

Table No.	Title	Page
1	Antimicrobial discs, concentration and interpretation of their	
	action on the isolated E. coli.	58
2	Disinfectants and their concentrations used in the disinfectant's	
	efficacy assay for the study bacteria	61
3	Oligonucleotide primers sequences.	63
4	Preparation of PCR Master Mix according to Emerald Amp GT	
	PCR mastermix	67
5	Temperature and time conditions of the primers during PCR	67
6	Biochemical characters of the recovered E. coli isolates	73
7	Serological identification of <i>E. coli</i>	74
8	Results of serotyping of 38 of E. coli isolates	75
9	Antimicrobial susceptibility of E. coli strains	77
10	Antimicrobial resistance profile of E. coli strains	77
11	the MIC interpretative standards for <i>E. coli</i> .	79
12	Results of antibacterial susceptibility and resistance patterns 3	
	E. coli isolates using MIC test	79
13	MIC Percentage of resistant, sensitivity of E. coli isolates	
	against 3 selected antibacterial agents	80
14	PCR amplification products for the different genes detected in	
	E. coli serogroups	81
15	Incidence of different genes detected in 078 serogroups.	82
16	Rate of morbidity and mortality in experimentally infected	
	groups	87

LIST OF FIGURES

Figure No.	Title	Page
1	E. coli stained with gram stain	72
2	Congo red agar (CRA) blackdry crystalline colonies indicating biofilm production	76
3	Inhibition zone interpretive criterion	80
4	Agarose gel electrophoresis of PCR produced after amplification of <i>blaTEM</i> gene (516bp) Lane L: 100: 1000 bp ladder as molecular size DNA marker, Lane P: Control positive for <i>blaTEM</i> gene, Lane N: Control negative, Lanes (1-19) positive isolates of <i>E. coli</i> at 516 bp, Lane 16 negative isolate of <i>E. coli</i> at 516bp.	82
5	Agarose gel electrophoresis of PCR produced after amplification of <i>adrA</i> gene (1113bp) Lane L: 100: 1000 bp ladder as molecular size DNA marker, Lane P: Control positive for <i>adrA</i> gene, Lane N: Control negative, Lanes (4 &11) negative isolates of <i>E. coli</i> at 1113 bp.	83
6	Agarose gel electrophoresis of PCR produced after amplification of <i>blaVIM</i> gene (280 bp) Lane L: 100:1000 bp ladder as molecular size DNA marker, Lane P: Control positive for <i>blaVIM</i> gene, Lane N: Control negative, Lanes (1,2,3,4 &19) negative isolates of E. coli at 280 bp.	83
7	Agarose gel electrophoresis of PCR produced after amplification of <i>iroN</i> gene (847 bp) Lane L: 100:1000 bp ladder as molecular size DNA marker, Lane P: Control positive for <i>iroN</i> gene, Lane N: Control negative, Lanes (1-19) negative isolates of E. coli at 847 bp.	84
8	Agarose gel electrophoresis of PCR produced after amplification of <i>ompA</i> gene (919 bp) gene for identification of enteropathogenic <i>E. coli</i> , Lane L: 100 :1000bp ladder as molecular size DNA marker, Lane P: Control positive for ompA gene, Lane N: Control negative, Lanes (4,8,11,16 &17) negative isolates of <i>E. coli</i> at 919bp.	84

LIST OF ABBREVIATIONS

Figure No.	Title	Page
9	Agarose gel electrophoresis of PCR produced after amplification of <i>qacED1</i> gene (362 bp) Lane L: 100: 1000 bp ladder as molecular size DNA marker, Lane P: Control positive for <i>qacED1 gene, Lane N: Control negative,</i> Lanes (4&16) negative isolates of <i>E. coli</i> at 362bp.	85
10	Agarose gel electrophoresis of PCR produced after amplification of <i>qnrA</i> gene (516bp) Lane L: 100:1000 bp ladder as molecular size DNA marker, Lane P: Control positive for <i>qnrA gene, Lane N: Control negative,</i> Lanes (1,5,6,12,15, & 17) positive isolates of E. coli at 516bp.	85
11	Normal embyro after 5 days post inoculation	86
12	Dwarfised Embyro is haemorraghic and edematous	86
13	Normal embyro after 5 days post inoculation	87
14	Seven days old chicken experimentally infected with EPEC (O_{78}) showing fibrinous perihepatitis	88
15	Seven old Ross chick naturally infected with <i>E. coli</i> showing depression, ruffled feathers and pasted vent	88
16	Seven day old chicken experimentally infected with $EPEC(O_{78})$ showing congested liver.	88
17	Intestine showing mild congestion and mononuclear cell infiltration	89
18	Liver showing mononuclear cell infiltration in portal area	89
19	Spleen showing area of necrosis and depletion of lymphocytes	90

LIST OF ABBREVIATIONS

- **AMR** : The antimicrobial resistance
- **APEC** : Avian pathogenic *E. coli*
- **APPCR** : Arbitrarily primed Polymerase Chain Reaction
- ATB : Antibiotic
- **CFU** : Colony forming unit
- **CLDT** : Cyto-lethal distending toxin
- **CLSI** : Clinical and Laboratory Standards Institute
- **CLT** : Chick lethal toxin
- **CRA** : Congo red agar
- **CRD** : Chronic respiratory disease
- **ECE** : Embryo chicken egg
- **EHEC** : Enterohemorrhagic *E. coli*
- **EIEC** : Enteroinvasive *E. coli*
- ELISA : Enzyme-Linked Immunosorbent Assay
- **EMB** : Eosine methylene blue agar
- **EPEC** : Enteropathogenic *E. coli*
- **EPS** : Extracellular polymeric substances
- **ERIC** : Repetitive intergenic consensus
- *ESBL* : Encoding broad-spectrum *B*-lactamase
- **ETEC** : Enterotoxigenic *E. coli*
- **ExPEC** : Extraintestinal pathogenic Escherichia *coli*
- **GIT** : Gastrointestinal tract

IBV	: Infectious bronchitis virus
IMViC	: Indole test; Methyl red test; Voges-Proskauer test; Citrate test
IROMPs	: Iron regulated outer membrane proteins
IroN	: Iron acquisition systems
Iss	: Increased serum survival
KDa	: Kilodalton
LPS	: lipopolysaccharide
MBC	: Minimum Bactericidal Concentration
MDR	: Multi drug resistance
MIC	: Minimum inhibitory concentration
NDV	: Newcastle disease virus
NMEC	: Neonatal meningitis E. coli
PAIs	: pathogenicity islands
PCR	: Polymerase Chain Reaction
PFGE	: pulsed-field gel electrophoresis
PU	: palindromic unit
QAC	: Quaternary ammonium compounds
QREC	: Quinolone-Resistant Escherichia coli
RAPD	: Random Amplificatioz of Polymorphic DNA
RDC	: respiratory disease complex
REP	: repetitive extragenic palindrome
SHS	: Swollen head syndrome
SPF	: Specific pathogen free

- **SPS** : Salpingoperitonitis
- **TBE** : Tris borate EDTA
- **TRTV** : Turkey rhinotracheitis virus
- *Tsh* : Temperature-sensitive haemagglutinin
- **TSI** : Triple Sugar Iron
- **UPEC** : Urinary pathogenic *E. coli*
- **UTI** : Urinary tract infection
- **VTEC** : Verotoxigenic *E. coli*

VI. SUMMARY AND CONCLUSION

APEC is a worldwide and major cause of economic losses in the poultry industry due to morbidity, mortality and lost production, putting at risk one of the world's cheapest sources of high-quality protein.

Our results revealed that over all isolation incidences according to morphology and biochemical characteristics was 38 suspected E. coli isolates out of 120 examined samples with a percentage 31.7%.

Serotyping is the basic method for typing of E. coli strains. In the present study the results showed that 11 serotypes from a total 38 E. coli isolates that have been serotyped. Among the typeable isolates, O78 (8 isolates), followed by O91:H21 (6 isolates), O1:H7 & O128: H2 (5isolates), O2: H6 (4isolates), O146:H21 (3isolates), O55:H7 &O26 &H11. (2isolates), O127:H6, O159& O17:H18.(1 isolate of each).

The results for antibiotic sensitivity showed that most of the isolates were multidrug resistant as they resist at least two antibiotics.

E. coli strains were highly tolerant to disinfectants, with a higher distribution of disinfectant resistance genes, Incorrect and excessive use of disinfectants has imposed selective pressure on strains, resulting in the high level of resistance to disinfectants and the wide distribution of resistant genes. The *E. coli* isolates in our study revealed association between phenotypic biocide tolerance and antibiotic resistance, So Bacteria that are co resistant to disinfectants and antibiotics would pose a significant health risk.

The use of the embryo lethality assay by poultry diagnostic laboratories will enable them to identify pathogenic E. coli by a relatively simple and inexpensive test and eliminate the use of the chicken model.

102

In conclusion, biofilm formation can be seen as an indication of virulence and drug resistance of pathogenic bacteria isolates and biofilm formation has strong correlation with these virulence properties.

Before making any therapeutic decision, antibiotic/disinfectant susceptibility testing is carried out, so as to use the effective antibiotic/ disinfectant