Zagazig University Faculty of Veterinary Medicine Clinical Pathology Department

CLINICOPATHOLOGICAL STUDIES ON THE EFFECT OF SOME FEED ADDITIVES IN BROILER CHICKS

BΥ

Hala Mohammed Mahmoud Abou-Elnaga

(B.V.SC., Suez Canal University, 2005) (M.V.SC., Zagazig University, 2018)

Under Supervision of

Prof. Dr. Mohamed A. Hashem

Prof. of Clinical Pathology Clinical Pathology Department Faculty of Vet. Medicine Zagazig University

Prof. Dr.

Azza E.A.Hassan

Prof.and Head of Research of Biochemistry Animal Health Research Institute, Mansoura Branch

ATHESIS

Submitted to Zagazig University For the Ph Degree of Veterinary Medical Sciences [Clinical Pathology] Department of Clinical Pathology (2022)

LIST OF CONTENTS

Title	Page
INTRODUCTION.	1
REVIEW OF LITERATURE.	4
MATERIAL AND METHODS.	54
RESULTS.	80
DISCUSSION.	148
SUMMARY.	168
CONCLUSION.	177
REFERANCES.	178
VITA.	212
ARABIC SUMMARY.	

LIST OF TABLES

Tab.	Title	Page
1-	Physical and chemical composition of the basal diets (%) according to NRC (1994).	55
2-	Summary of experimental design	64
3-	Mortality rate of chickens in different groups during the experimental periods.	80
4-	Body weight (g/bird/week) in chickens of different groups during the experimental periods (mean values \pm S.E).	88
5-	Body weight gain (g/bird/week) in chickens of different groups during the experimental periods (mean values \pm S.E).	89
6-	Feed consumption (g/bird/week) in chickens of different groups during the experimental periods (mean values \pm S.E).	90
7-	Feed conversion ratio in chickens of different groups during the experimental periods (mean values \pm S.E).	91
8-	Some liver enzymes activity in chickens of different groups at 23^{rd} & 37^{th} days of the experimental periods (mean values± S.E).	95
9-	Proteinogram in chickens of different groups at $23^{rd} \& 37^{th}$ days of the experimental periods (mean values± S.E).	99

10-	Some renal function tests in chickens of different groups at 23^{rd} & 37^{th} days of the experimental periods (mean values± S.E).	103
11-	Some serum humoral immunological parameters (IL6&IgA) in chickens of different groups at 23^{rd} & 37^{th} days of the experimental periods (mean values± S.E).	107
12-	Phagocytic activity and phagocytic index in chickens of different groups at 23^{rd} & 37^{th} days of the experimental periods (mean values± S.E).	110
13-	Some serum markers for oxidative stress and antioxidant enzymes activities in chickens of different groups at 23^{rd} & 37^{th} days of the experimental periods (mean values± S.E).	113
14-	DNA damage indices (comet assay) in liver tissue of chickens in different groups at 23^{rd} day of experimental periods (mean values± S.E).	119
15-	DNA damage indices (comet assay) in liver tissue of chickens in different groups at 37^{th} day of experimental periods (mean values± S.E).	120
16-	DNA damage indices (comet assay) in the intestinal tissue in chickens in different groups at 23^{rd} day of experimental periods (mean values± S.E).	121
17-	DNA damage indices (comet assay) in the intestinal tissue in chickens in different groups at 37^{th} day of experimental periods (mean values± S.E).	122

18-	DNA damage indices (comet assay) in lung tissue of chickens in different groups at 23^{rd} day of experimental periods (mean values± S.E).	123
19-	DNA damage indices (comet assay) in lung tissue of chickens in different groups at 37^{th} day of experimental periods (mean values± S.E).	124

LIST OF FIGURES

Fig.	Title	Page
1-	Mode of action of probiotics in poultry (Kabir, 2009).	6
2-	Mode of action of exogenous enzymes (Beauchemin et al., 2004).	24
3-	Weekly body weight in chickens of different groups during the experimental periods.	92
4-	Weekly body weight gain in chickens of different groups during the experimental periods	92
5-	Weekly feed consumption in chickens of different groups during the experimental periods.	93
6-	Weekly feed conversion ratio in chickens of different groups during the experimental periods.	93
7-	Serum ALT activity in chickens of different groups at the 23^{rd} and 37^{th} days.	96
8-	Serum AST activity in chickens of different groups at the 23 rd and 37 th days	96
9-	Serum ALP activity in chickens of different groups at the 23^{rd} and 37^{th} days.	97
10-	Serum total protein level in chickens of different groups at the 23 rd and 37 th days.	100

List of Figures

		I
11-	Serum albumin level in chickens of different groups at the 23^{rd} and 37^{th} days.	100
	groups at the 25 and 57 days.	100
12-	Serum globulin level in chickens of different groups at the 23 rd and 37 th days.	101
13-	Serum A/G ratio in chickens of different groups at the 23^{rd} and 37^{th} days.	101
14-	Serum urea level in chickens of different groups at the 23^{rd} and 37^{th} days.	104
15-	Serum creatinine level in chickens of different gro at the 23 rd and 37 th days.	104
16-	Serum uric acid level in chickens of different groups at the 23 rd and 37 th days.	105
17-	Serum IgA in chickens of different groups at the 23^{rd} and 37^{th} days.	108
18-	Serum IL6 in chickens of different groups at the 23^{rd} and 37^{th} days.	108
19-	Phagocytic activity in chickens of different groups at the 23 rd and 37 th days.	111
20-	Phagocytic index in chickens of different groups at the 23^{rd} and 37^{th} days.	111
21-	Serum MDA level in chickens of different groups at the 23^{rd} and 37^{th} days.	114
22-	Serum SOD activity in chickens of different groups at the 23 rd and 37 th days.	114
23-	Serum CAT activity in chickens of different groups at the 23^{rd} and 37^{th} days.	115

List of Figures

-		
24-	Comet length in liver tissue of different groups at 23 rd and 37 th days.	128
25-	Head diameter in liver tissue of different groups at 23^{rd} and 37^{th} days.	128
26-	DNA% in head in liver tissue of different groups at 23^{rd} and 37^{th} days.	129
27-	Tail length in liver tissue of different groups at 23^{rd} and 37^{th} days.	129
28-	DNA% in tail in liver tissue of different groups at 23^{rd} and 37^{th} days.	130
29-	Tail moment in liver tissue of different groups at 23^{rd} and 37^{th} days.	130
30-	Olive tail moment in liver tissue of different groups at 23^{rd} and 37^{th} days.	131
31-	Comet length in intestinal tissue of different groups at 23^{rd} and 37^{th} days.	131
32-	Head diameter in intestinal tissue of different groups at 23^{rd} and 37^{th} days.	132
33-	DNA% in head in intestinal tissue of different groups at 23^{rd} and 37^{th} days.	132
34-	Tail length in intestinal tissue of different groups at 23^{rd} and 37^{th} days.	133
35-	DNA% in tail in intestinal tissue of different groups at 23^{rd} and 37^{th} days.	133
36-	Tail moment in intestinal tissue of different groups at 23 rd and 37 th days.	134

List of Figures

37-	Olive tail moment in intestinal tissue of different groups at 23 rd and 37 th days.	134
38-	Comet length in lung tissue of different groups at 23 rd and 37 th days.	135
39-	Head diameter in lung tissue of different groups at 23 rd and 37 th days.	135
40-	DNA% in head in lung tissue of different groups at 23 rd and 37 th days.	136
41-	Tail length in lung tissue of different groups at 23^{rd} and 37^{th} days.	136
42-	DNA% in tail in lung tissue of different groups at 23^{rd} and 37^{th} days.	137
43-	Tail moment in lung tissue of different groups at 23^{rd} and 37^{th} days.	137
44-	Olive tail moment in lung tissue of different groups at 23 rd and 37 th days.	138

LIST OF PHOTOS

Photo	Title	Page
No.		
1-	Preparation of pathogenic <i>E.coli</i> titer.	56
2-7	Clinical signs of colibacillosis of infected non	
	treated group showed dullness, depression,	
	ruffled feathers, inability to stand, dropping	
	wings, sunken eyes, decreased body weight,	
	and high mortality rate.	82
8-10	Clinical signs of colibacillosis of infected	
	treated groups with probiotic and prebiotic,	
	some chicks showed decrease appetite, ruffled	
	feather and decrease body weight.	83
11-	Necropsy of avian colibacillosis of infected	
16	non treated group showed moderate to severe	
	redness and ballooning of intestine, congestion	
	of liver and contained blood tinged materials,	
	with white pinpoint foci on liver and increase	0.4
17-	size of heart with redness.	84
17- 19	Necropsy of avian colibacillosis of infected	
17	treated groups with probiotic and prebiotic showed moderate ballooning and redness of	
	the intestine, congestion in liver and slight	
	redness of heart.	85
20-	Nucleus of hepatic cells of chickens of	05
23	different groups, stained with ethidium	
	bromide (400x)	
	Photo (20): Control, probiotic and prebiotic	
	groups showed no DNA damage, noticed by	
	lack of DNA fragment migration away from	
	the nucleus core.	
	Photo (21): E.coli infected group showed a	
	high degree of DNA damage, with a greatly	
	reduced nucleus core and a large cloud of	125

	DNA fragments migrating away from the core and forming the characteristic comet tail.	
	Photo (22): <i>E.coli</i> infected group and treated with probiotic showed a minimal degree of	
	DNA damage.	
	Photo (23): <i>E.coli</i> infected group and treated	
	with prebiotic showed a moderate degree of	
	DNA damage.	
24- 27	Nucleus of intestinal cells of chickens of different groups, stained with ethidium	
	bromide (400x)	
	Photo (24): Control, probiotic and prebiotic	
	groups showed no DNA damage, noticed by	
	lack of DNA fragment migration away from	
	the nucleus core.	
	Photo (25): <i>E.coli</i> infected group showed a high degree of DNA damage, with a greatly	
	reduced nucleus core and a large cloud of	
	DNA fragments migrating away from the core	
	and forming the characteristic comet tail,	
	which the DNA damage in intestinal cells high	
	than hepatic and bronchial cells.	
	Photo (26): E.coli infected group and treated	
	with probiotic showed a minimal degree of	
	DNA damage but the damage high than	
	hepatic and bronchial cells. Photo (27): <i>E.coli</i> infected group and treated	
	with prebiotic showed a moderate degree of	
	DNA damage but the damage high than	
	hepatic and bronchial cells.	126
28-	Nucleus of bronchial cells of chickens of	
31	different groups, stained with ethidium	
	bromide (400x)	
	Photo (28): Control, probiotic and prebiotic	107
	groups showed no DNA damage, noticed by	127

1.1. f DNA for smarth minuties and for more	
lack of DNA fragment migration away from	
the nucleus core.	
Photo (29): <i>E.coli</i> infected group showed a	
high degree of DNA damage, with a greatly	
reduced nucleus core and a large cloud of	
DNA fragments migrating away from the core	
and forming the characteristic comet tail	
,which the damage high than hepatic cells but	
low than intestinal cells.	
Photo (30): E.coli infected group and treated	
with probiotic showed a minimal degree of	
DNA damage, but the damage high than	
hepatic cells and low than intestinal cells.	
Photo (31): E.coli infected group and treated	
with prebiotic showed a moderate degree of	
DNA damage, but the damage high than	
hepatic cells and low than intestinal cells.	
32- H&E-stained liver sections of chicken infected	1
with <i>E.coli</i> at 23 rd days of experiment (A))
showing focal infiltration of inflammatory cells	5
(arrow) beside mild atrophy of some hepatocytes	5
(arrowhead), was detected. At 37 th days (B	
showing perivascular aggregation of leucocytic	
cells and fibroblast (arrowhead) in addition to	
karyoltic hepatocytes (arrows). Group (5) (C) at 23^{n}	-
days of experiment liver showing mild perivascula	
inflammatory cells infiltration (arrowhead) with	
congestion of hepatic sinusoids. At 37rd days (D	
showing some diffuse atrophied hepatocyte	
(arrowhead). Group (6) (E) at 23^{rd} days of	f
experiment, liver showing perivascular infiltration	
of leucocytic cells and Von kupffer cells	
(arrowhead), after 37 th days (F) mild atrophy of	
some hepatocytes and congestion of hepatic blood	
vessel (arrowhead), were observed in some cases.	145
vesser (arrownead), were observed in some cases.	1-13

33-	H&E-stained kidney sections of chicken infected	
	with <i>E.coli</i> at 23^{rd} days of experiment (A)	
	showing focal aggregation of extravasated	
	erythrocytes (haemorrhage) (arrow). At 37 th days	
	of experiment (B), focal aggregation of leucocytic	
	cells (arrow) in addition to congestion of blood	
	vessels. Group (5) at 23 rd days of experiment (C)	
	showing only mild vascular congestion (arrows)	
	with normal renal cortex, after 37 th days (D)	
	appeared normal with atrophy of some renal tubules	
	(arrows). Group (6) at 23 rd day of experiment (E)	
	showing moderate congestion of blood vessels	
	(arrows-arrows head) with normal renal cortex and	
	medulla. After 37 th days (F) glomeruli appeared	
	apparently normal with mild diffuse inter tubular	
	hemorrhage (arrowhead) with mild congestion	
24	(arrow).	146
34-	H&E-stained intestine sections of chicken	
	infected with <i>E.coli</i> at 23^{rd} days of experiment (A)	
	showing complete destruction of intestinal	
	mucosa with severe degree of necrotic enteritis. At 27^{th} days of experiment (B) showing population	
	At 37 th days of experiment (B) showing necrotic enteritis associated with atrophy of intestinal villi	
	(white arrowheads) with interglandular	
	inflammatory cells infiltration (black arrowhead).	
	Group (5) at 23^{rd} (C) showing atrophy of some	
	submucosal glands (arrowhead), after 37 th days of	
	experiment (D) showing fusion of some intestinal	
	villi (arrowhead). Group (6) at 23^{rd} days of	
	experiment (E) showing moderate degree of	
	necrotic enteritis lesions (arrowhead), after 37 th	
	days (F) intestine illustrated normal mucosal	
	structure with moderate degree of catarrhal	
	enteritis (arrowhead).	147

LIST OF ABBREVIATIONS

Abbr.	Description
ALT	Alanine aminotransferase
AST	Aspartate aminotransferase
Alb.	Albumin
A/G	Albumin Globulin Ratio
ALP	Alkaline phosphatase
B.W	Body weight
BWG	Body weight gain
CAT	Catalase
CFU	Colony forming units
E.coli	Escherichia coli
FAO	Food and Agriculture organization
FCR	Feed conversion ratio
FI	Feed intake
Fig.	Figure
Gps.	Groups
Glob.	Globulin
HBSS	Hank's balanced salt solution
IgA	Immunoglobulin A
IL-6	interleukin-6
MDA	Malondialdehyde
P.B.S.	Phosphate Buffer Saline

PM	Post Mortem
ROS	Reactive oxygen species
RPMI	Roswell park Memorial Institute
SOD	Superoxide dismutase
T.P.	Total proteins
WHO	world Health Organization

SUMMARY

In recent years, the feed additives are being studied extensively with great interest which have desirable effects by improving the animals performance and health, through enhancing digestibility of the feed materials, promoting growth rate, increasing feed conversion and preventing disease. Extensive using of antibiotics lead to imbalance of the intestinal microflora, appearance of resistant bacteria and also drug residues in the bird for that tend to restrict using of antibiotics and using natural feed additives. From this feed additives probiotics and prebiotics. Collibacillosis in Egypt and all over the world is considering one of the most chronic bacterial disease.

So this study aim to control the collibacillosis by using some feed additives as probiotics and prebiotics and studying their effects on biochemical & immunological parameters, as well as DNA damage and histopathological studies.

This study done on one hundred and twenty (120) chicks, one day old, commercial Hubbard chicks obtained from Dakahlia Poultry Company, divided equally into 6 groups of each 20 chicks.

Group 1: Chicks kept as normal control.

Group 2: Chicks administrated Curazym 1g/kg feed for 42 days

Group 3: Chicks administrated ZADO 0.6g/kg feed for 42 days.

- **Group 4:** chicks infected orally by 1ml *E. coli* O78 (3x 10^7 CFU) intra crop at 10^{th} days old.
- **Group 5:** Chicks administrated *Curazym* 1g/kg feed administrated from one day old then infected orally by 1 ml *E. coli* O78 ($3x \ 10^7$ CFU) intra crop at 10^{th} days old.
- **Group 6:** Chicks administrated ZADO 0.6g/kg feed administrated from one day old then infected orally by 1 ml *E. coli* O78 (3x 10⁷ CFU) intra crop at 10th days old.

Two blood samples were collected from each birds groups via wing vein at 23rd and 37th days old. The first blood samples were taken in heparinized tube for phagocytic activity and phagocytic index test. The second blood samples without anticoagulant to take serum for biochemical, immunological and serum antioxidant.

Specimens from internal organs (liver, kidney and intestine) collected from all groups and fixed in 10% neutral buffered formalin. Five micron thick paraffin sections prepared and stained with hematoxyline and eosin (H&E) and examined microscopically.

Specimens from internal organs (liver, intestine and lung) collected at day 23rd and 37th day from all groups placed in ice cold phosphate buffer saline (BPS) and were kept on -20°C until used for the comet assay.

The evaluation of effect of probiotic and prebiotic based on evaluating the indices of the body performance (BW, BWG, FI and FC) and blood chemistry as liver enzymes as (ALT, AST, ALP), kidney function tests (serum urea, creatinine and uric acid,), proteinogram (total proteins, albumin, globulin and A/G ratio), also immunological studies as serum Immunoglobulin A (IgA), interleukin-6 (IL-6) and phagocytic activity and phagocytic index, serum antioxidant activity (MDA, SOD and CAT) and comet assay test.

Clinical signs and mortality:

The result showed that birds infected with *E.coli* and nontreated exhibited ruffled feathers, inability to stand, dropping wings, sunken eyes, in-appetence, dullness, depression, decreased body weight, breathing difficulty and gasping, sneezing and coughing, beak fluid discharge, white to yellowish diarrhea and high mortality rate in a clinical course, where that clinical signs decreased in the infected treated groups.

Postmortem findings:

The result showed that birds infected with *E.coli* and nontreated were submitted to necropsy. They showed moderate to severe redness of airsac, intestine, heart and ballooning of intestine, liver has enlarged, congested and contained blood tinged materials, with presence of white pinpoint multifocal foci. While the severity of findings were decreased in the experimentally *E.coli* infected treated birds with probiotic and prebiotic as a moderate of aforementioned lesions were seen.

Body performance results:

Showed a high significant increase in the weekly live body weight, body weight gain, feed consumption with a significantly decreased of feed conversion rate were noticed in treated chicks with probiotic and prebiotic (gps.2&3) in comparison with normal control group (gp.1).On other hand the weekly live body weight, body weight gain and feed consumption of *E.coli* infected non-treated chicks (gp.4) was significantly decreased with a high significant increase in feed conversion rate when compared with control group. While the *E.coli* infected treated groups with probiotic and prebiotic (gps.5&6) showed a significant improvement in the body performance parameters in comparing with infected non treated group during the experimental period.

Biochemical findings:

A) Changes in some liver enzymes:

The liver enzymes ALT, AST and ALP showed a significant increase in *E.coli* infected non treated group and slight increase in *E.coli* infected treated groups. On other hand, a slight significant decrease in liver enzymes in treated groups with probiotic and prebiotic in all experimental periods.

B) Changes in proteinogram:

Gps. (2&3) showed a significant increase in the serum total protein, albumin and total globulin with non-significant difference recorded in albumin globulin ratio compared with

control group. While the 4th group revealed a significant decrease in total protein, albumin and albumin globulin ratio with a significant increase in total globulin at the begging of experiment end with a significant decrease compared with normal group. On the other hands gps. (5&6) recorded an improvement in serum total protein, albumin and total globulin which showed a significant increase in a comprision with the *E.coli* infected non treated birds all over the experimental period.

C) Changes in some renal function tests

The serum biochemical markers for kidney functions evaluation (serum urea, creatinine and uric acid) showed a significant increase in *E.coli* infected non treated group and slight increase in *E.coli* infected treated groups. On other hand, a slight significant decrease in kidney function tests in treated groups with probiotic and prebiotic in all experimental periods.

Immunological results:

A)-Serum immunological parameters (IgA& IL6):

Serum IgA at 23rd &37th days of experiment noticed a significant increase while, the serum IL6 showed a significant decrease in treated chickens with probiotic or prebiotic when compared with control group. However the *E.coli* infected non-treated birds showed a significant increase in serum IgA levels at 23rd days old followed by a significant decrease at 37th days with a significant increase in serum IL6 all over the experimental period compared with control.While the *E.coli* infected treated

groups with probiotic or prebiotic recorded a significant increase in the serum IgA and serum IL6 compared with the *E.coli* infected non treated group.

B)-Phagocytic activity and phagocytic index results:

Sera fed chickens groups with probiotic and exogenous enzymes showed a significant increase in phagocytic activity, and phagocytic index when compared with control group. Where the chickens infected with *E.coli* reported a significant decrease in phagocytic activity, and phagocytic index comparing with the control group all over the experimental period. While the chickens infected with *E.coli* and treated with probiotic or exogenous enzymes revealed a significant increase in phagocytic activity, and phagocytic index when compared with *E.coli* infected non-treated group.

Oxidative stress and Antioxidant activity:

The MDA levels were significantly decreased in gps. (2&3), but a significantly increased in gps. (4&5&6) respectively, on other hands a significant increase in serum (SOD) and (CAT) activities were observed in gps. (2&3) and a significant decrease in gps. (4&5&6) compared with other groups at 23^{rd} and 37^{th} days.

Evaluation of DNA damage:

Comet assay test in the liver, intestine and lung showed an improvement in the DNA degradation in the group treated with the probiotic. While the group treated with prebiotic showed non-significant difference in DNA degradation compared to the control group during the course of experimental period. On the other hand the *E.coli* infected non treated group (gp.4) showed highly DNA degradation compared with control group during the course of experimental period. Where Gp.5 showed an improvement in DNA degradation, while there is a low DNA degradation improvement in the gp.6 compared to infected non treated group, at both 23^{rd} & 37^{th} days of experiment .

Histopathological results:

The histopathological results of *E.coli* infection:

- Liver of infected chickens with *E.coli* at 23rd days showing severe dilated and congestion of hepatic blood vessel with focal periportal infiltration with inflammatory cells, beside severe degenerative changes as vacuolar degeneration with atrophied hepatocytes were noticed. At 37th days showing disappear of basic architecture of liver, in addition to multifocal coagulative necrosis represented in karyoltic nuclei of hepatocytes, perivascular aggregation of leucocytic cells and fibroblast and hyperemia was seen.
- Kidney of infected chickens with *E.coli* at 23rd days showing severe congestion of renal blood vessel with interstatial hemorrhage, beside degenerative changes in epithelial lining of renal tubule. At 37th days of infection showing massive aggregation of leucocytic cells of mainly lymphocytes in addition to focal necrosis of renal tubules and congestion of renal blood vessels

• Intestine of infected chickens with *E.coli* at 23rd days showing vacuolation of submucosal glandular epithelium with edema among muscle fiber of muscularis mucosa. At 37th days showing sever inter glandular and lamina propria inflammatory cells infiltration of mainly lymphocytes in addition to atrophy of some intestinal glands.

The histopathological results of *E.coli* infection and treated with probiotic and prebiotic.

- Liver of chickens infected with *E.coli* treated with probiotic at 23rd days showing apparently normal hepatic parenchyma with mild degeneration in hepatocytes, dilated hepatic sinusoids and mild perivascular inflammatory cells infiltration with congestion of hepatic sinusoids. While at 37th days showing restore its normal histomorphologic picture of tissue architecture and cellular details with congestion of both hepatic blood vessels and hepatic sinusoids
- Kidney of chickens infected with *E.coli* treated with probiotic at 23rd days of experiment showing apparently normal renal cortex with normal renal medulla except mild focal intertubular hemorrhage. At 37th days showing reduction in renal lesions with few lesions still as degenerations and atrophy of some renal tubules.
- Intestine of chickens infected with *E.coli* treated with probiotic at 23rd showing normal mucosa and sub mucosa with congestion of serosa blood vessels, atrophy of some

submucosal glands. At 37th days showing normal intestinal layers with fusion of some intestinal villi.

- Liver of chickens infected with *E.coli* and treated with prebiotic at 23rd showing slight congestion of both hepatic blood vessels and sinusoids. At 37th day, liver sections showing apparently normal tissue architecture and cellular details with slight lymphocytic cells infiltration.
- Kidney of chickens infected with *E.coli* and treated with prebiotic at 23rd days showing normal renal cortex and medulla with cystic dilation of some renal tubules and moderate congestion of blood vessels. At 37th day, kideny sections of most chickens showed improvement of lesions with mild diffuse inter tubular hemorrhage and the glomeruli appeared apparently normal.
- Intestine of chickens infected with *E.coli* and treated with *prebiotic* at 23rd showing elongated villi with or without mild mucinous degeneration. At 37th day, intestinal sections showing apparently normal mucosal structure with inflammatory cells focally infiltrate lamina propria