CHARACTERIZATION AND CONTROL OF FIG MOSAIC DISEASE

By

NEVEN IBRAHIM MOHAMMED TOIMA

B.Sc. Agric. Sci. (Plant Pathology), Fac. Agric., Cairo Univ., 2008 M.Sc.Agric.Sci. (Plant Pathology), Fac. Agric., Cairo Univ., 2015

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Plant Pathology)

Department of Plant Pathology Faculty of Agriculture Cairo University EGYPT

2022

Format Reviewer

Vice Dean of Graduate Studies

Name of Candidate: Neven Ibrahim Mohammed Toima Degree: Ph.D. Title of thesis: Characterization and Control of Fig Mosaic Disease. Supervisors: Dr. Om- Hashem Mohammed El-Banna Dr. Ali Mohammed Sayed Dr. Sahar Abd El-Aziz Youssef

Department: Plant Pathology

Date: 1 / 8 / 2022

ABSTRACT

Fig mosaic is a viral disease (FMD) that poses a significant threat to the economy of the fig production in Egypt. During the two growing seasons 2017 and 2018, fig leaves and fruits showing different symptoms associated with fig mosaic disease (FMD) were collected and differentiated from the most famous fig-growing governorates in Egypt, Marsa Matrouh, Ismailia and Giza. Pathogenicity tests of FMD viruses to some herbaceous and fig hosts through mechanical and graft transmission was carried out. Symptomatic samples were tested by RT-PCR using specific primers to assess the presence of FMV, FLMaV-1, FLMaV-2, FMMaV, FLV-1, FFkaV and FCV. Three viruses were detected in mixed infections and showed positive results. FMV was detected with infection rate 49% followed by FLMaV-2 with infection rate 21.8% and FLMaV-1 with infection rate 10.9%, whereas all tested samples were negative for the other viruses.

The nucleotide sequence and phylogenetic analysis indicated that the Egyptian FMV isolate was closely related to other FMV isolates, especially the Argentina ones with 99% identity. While FLMaV-1 isolate showed more than 98% identity with Saudi Arabia FLMaV-1 isolate, on the other hand, the isolate of FLMaV-2 showed 100% identity with Italy FLMaV-2 isolate based on phylogenetic analysis. Transmission electron microscope (TEM) observations of thin-sectioned tissues from symptomatic leaves and fruits showed double membrane bodies (DMBs) characteristic for FMV particles.

Biochemical studies were made among three fig varieties *Ficus carica*, cv.sultany, *Ficus carica*, cv. kommathri and *Ficus carica*, cv. Kahramany that were infected with FLMaV-1, FLMaV-2 and FMV by mechanically and grafting transmitted. The phenolic contents increased in each of the three fig varieties comparing with healthy one. However, sugars, amino acids, indoles, chlorophyll a, chlorophyll b and carotenoids were reduced in each of the three fig varieties comparing with healthy one. For producing virus-free plant material, Two Egyptian fig accessions of local varieties (*Ficus carica* cv. Sultany and *Ficus carica* cv. kommathri) infected by FLMaV-1, FLMaV-2 and FMV were subjected to thermotherapy technique with hot water which was reliable for elimination from zero to 50% of fig viruses. However, elimination of the three viruses was possible though with cryotherapy technique with rates of removal from zero to 40% while cryotherapy coupled with thermotherapy was the most effective for elimination from 10 to 60% of fig viruses.

Key words: FMD, Fig viruses, RT-PCR, nucleotide sequence, grafting, DMBs, Biochemical studies, thermotherapy and cryotherapy.

LIST OF ABBREVIATIONS AND SYMBOLS

bp	Base pair(s)
Cv.	Cultivar
Cvs.	Cultivars
DMBS	Double membrane bodies
DMSO	Dimethyl sulfoxide
E	Extinction coefficient
et al.	Et alii
FMD	Fig mosaic disease
FMV	Fig mosaic virus
FLMaV-1	Fig leaf mottle associated virus-1
FLMaV-2	Fig leaf mottle associated virus-2
FLV-1	Fig latent virus-1
FMMaV	Fig milde mottle associated virus
FCV	Fig cryptic virus
FFKaV	Fig fleck associated virus
FBV-1	Fig badnavirus-1
g/gm	Gram
ha	Hectare
hrs	Hours
HSP70	Heat shock protein 70
LS	Loading solution
Μ	Molar
mg	Milligram
ml	Mille
mm	Millemeter
nm	Nanometer
No.	Number
PDAB	β -dimethylaminobenzaldehyde
pН	Potential of hydrogen
PVS 2	Plant vitrification solution
RdRp	RNA-dependent RNA polymerase
RNA	Ribonucleic acid
rpm	revolutions per minute
RT-PCR	Reverse transcription-polymerase chain reaction
S	second
TEM	Transmission electron microscope

UV.	Ultra violet
V	Volt
μl	Microlitre
β	Beta
%	Percentage
°C	Degree celsius
ТМ	Trade mark

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	6
MATERIALS AND METHODS	52
RESULTS	70
1. Disease symptoms	70
2. Pathogenicity tests	79
a. Mechanical san transmission	79
b. Grafting transmission	83
3. Molecular biology studies	87
a. One step reverse transcription polymerase chain	01
reaction (RT-PCR)	87
b. Sequence analysis	92
4. Ultrastructural changes caused by fig mosaic disease	98
5. Biochemical changes in fig mosaic infected figs	109
a. Determination of total sugars	110
b. Determination of total phenols	112
c. Determination of total amino acids	114
d. Determination of total indoles	116
e. Determination of total pigments	118
6. Control	123
a. Thermotherapy	123
b. Cryotherapy	125
c. Combination of cryotherapy with thermotherapy	128
DISCUSSION	131
SUMMARY	146
REFERENCES	151
ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1.	Host plants tested against fig mosaic disease viruses isolated from naturally infected fig trees	53
2.	List of primers used in RT-PCR for seven fig viruses' detection.	57
3.	Response of host range of fig mosaic disease viruses by mechanical transmission as indexed by external symptoms, infection rate and RT-PCR detection	80
4.	Response of host range of fig mosaic disease viruses by grafting transmission as indexed by external symptoms, infection rate and PCR detection	83
5.	Nucleic acid (RNA) concentration $(ng/\mu l)$ of fig mosaic disease viruses in some fig leaf samples	88
6.	Incidence of FMV, FLMaV-1, FLMaV-2, FMMaV, FFkaV, FLV-1 and FCV infections from samples from three fig growing governorates of Egypt and different fig varieties as determined by RT-PCR assays.	91
7.	Determination of total sugar contents in three infected fig species transmitted mechanically and by grafting comparing with healthy one	111
8.	Determination of total phenols in three infected fig species transmitted mechanically and by grafting comparing with healthy one	113
9.	Determination of total amino acids contents in three infected fig species transmitted mechanically and by grafting comparing with healthy one	115
10.	Determination of total indoles contents in three infected fig species transmitted mechanically and by grafting comparing with healthy one	117

LIST OF TABLES (continued)

11.	Determination of chlorophyll a in three infected fig species transmitted mechanically and by grafting comparing with healthy one	9
12.	Determination of chlorophyll b in three infected fig species transmitted mechanically and by grafting comparing with healthy one	0
13.	Determination of carotenoids in three infected fig species transmitted mechanically and by grafting comparing with healthy one	2
14.	Control of fig mosaic disease by short and long term thermotherapy treatments of shoots for two fig varieties 124	4
15.	Control of fig mosaic disease by simple one step freezing and droplet vitrification cryotherapy treatments of shoots for two fig varieties	7
16.	Control of fig mosaic disease by combination of cryotherapy with thermotherapy treatments of shoots for two fig varieties	9

LIST OF FIGURES

No. 1.	Title <i>Ficus carica</i> , cv. kommathri leaves: (A) healthy fig leaf (B-E) symptoms of mosaic and deformation on naturally infected fig leaves
2.	<i>Ficus carica</i> , cv. kommathri leaves: Symptoms of chlorotic ringspot and deformation on naturally infected fig leaves
3.	<i>Ficus carica</i> , cv. kommathri leaves: (A) healthy fig leaf whereas, (B) Symptoms of deformation and chlorotic spots on naturally infected fig leaves
4.	<i>Ficus carica</i> , cv. kommathri leaves :(A-C) Symptoms of chlorosis and deformation on naturally infected fig leaves.
5.	<i>Ficus carica</i> , cv. El-Adasy leaves: (A-C) Symptoms of mottling and deformation on naturally infected fig leaves.
6.	<i>Ficus carica</i> , cv. El-Adasy leaves: (A) Symptoms of chlorotic blotching (B, C) Symptoms of chlorotic blistering on naturally infected fig leaves
7.	<i>Ficus carica</i> cv.sultany leaves: (A) healthy fig leaf whereas, (B, C) Symptoms of vein clearing on naturally infected fig leaves.
8.	<i>Ficus carica</i> cv.sultany leaves: (A) healthy fig leaf whereas, (B, C) Symptoms of yellowing on naturally infected fig leaves.
9.	<i>Ficus carica</i> cv.sultany leaves: (A) healthy fig leaf (B) Symptoms of deformation and vein clearing on naturally infected fig leaves.
10.	<i>Ficus carica</i> cv.sultany leaves: (A) healthy fig leaf whereas, (B) Symptoms of vein feathering on naturally infected fig leaves.

11.	<i>Ficus carica</i> cv.sultany fruits: (A) healthy fig fruit whereas, (B, C) Symptoms of yellow ringspot on naturally infected fig fruits
12.	<i>Ficus carica,</i> cv. kommathri fruits: (A- C) Symptoms of yellow ringspot on naturally infected fig fruits
13.	<i>Ficus carica</i> cv.sultany fruits: (A, B) Symptoms of necrotic ringspot on naturally infected fig fruits
14.	<i>Ficus carica</i> , cv. El-Adasy fruits: (A, B) Symptoms of deformation and necrotic ringspot on naturally infected fig fruits
15.	<i>Ficus carica</i>, cv.sultany leaves: (A) healthy fig leaf. (B-F) mosaic, mottling, yellowing, chlorotic blotching, deformation and vein clearing symptoms on inoculated fig leaves after mechanical transmission
16.	<i>Ficus carica</i> , cv. Kommathri leaves: (A) healthy fig leaf. (B-D) chlorotic ring spot (E-G) mosaic, chlorosis and yellowing symptoms on inoculated fig leaves after mechanical transmission
17.	<i>Ficus carica</i> , cv. kahramany leaves: (A) healthy fig leaf. (B-D) leaf blistering (E, F) mosaic and mottling symptoms on inoculated fig leaves after mechanical transmission
18.	<i>Ficus carica</i> , cv.sultany leaves: (A) healthy fig leaf. (B, C) chorotic spots symptoms, (D) mosaic symptoms on fig leaves after grafting transmission
19.	<i>Ficus carica</i> , cv. kommathri leaves: (A) healthy fig leaf. (B, C) interveinal chlorosis and mosaic spots with colored contour symptoms on fig leaves after grafting transmission.
20.	<i>Ficus carica</i>, cv. kahramany leaves: (A) healthy fig leaf.(B, C) vein clearing and yellowing symptoms on fig leaves after grafting transmission

21.	Gel electrophoresis showing RT- PCR amplification of fig mosaic virus (FMV), M: DNA marker weight, 100 bp, lanes: (1to4): mechanically inoculated fig plants, lanes: (5to7): grafted fig plants, lane 8: healthy fig sample used as negative control.	86
22.	Gel electrophoresis showing RT- PCR amplification of fig leaf mottle associated virus 1 (FLMaV-1), M: DNA marker ladder weight 100 bp, lanes: (1to4): mechanically inoculated fig plants, lanes: (5to7): grafted fig plants, lane 8: healthy fig sample used as negative control	86
23.	Gel electrophoresis showing RT- PCR amplification of fig leaf mottle associated virus 2 (FLMaV-2), M: DNA marker ladder weight 100 bp, lanes: (1to4): mechanically inoculated fig plants, lanes: (5to7): grafted fig plants, lane 8: healthy fig sample used as negative control	87
24.	Gel electrophoresis showing RT- PCR amplification of fig mosaic virus (FMV) in fig samples. M: DNA marker ladder weight 100 bp, lanes: (1to15): various symptomatic fig samples, lane16: positive control and lane17: healthy fig sample used as negative control	89
25.	Gel electrophoresis showing RT- PCR amplification of fig leaf mottle associated virus 1 (FLMaV-1) in fig samples. M: DNA marker ladder weight 100 bp, lanes: (1to14): various symptomatic fig samples, lane 15: positive control and lane16: healthy fig sample used as negative control.	90
26.	Gel electrophoresis showing RT- PCR amplification of fig leaf mottle associated virus 2 (FLMaV-2) in fig samples. M: DNA marker ladder weight 100 bp, lanes: (1to14): various symptomatic fig samples, lane 15: positive control and lane16: healthy fig sample used as negative control	90
		20

27.	Incidence of FMV, FLMaV-1, FLMaV-2, FMMaV, FFkaV, FLV-1 and FCV infections using RT-PCR assays in samples from three Egyptian governorates and distinct fig cultivars	92
28.	Multiple sequence alignment of the RdRp gene for RNA- dependent RNA polymerase for FMV Egyptian isolate compared with Argentina, Canada, Costa Rica, Greece and Japan isolates	93
29.	Phylogenetic analysis based on the nucleotide sequences showing the genetic relationship between the RdRp gene for RNA- dependent RNA polymerase for the Egyptian isolate of FMV with other homology on the GenBank 9	94
30.	Multiple sequence alignment of the HSP70 gene for RNA- dependent RNA polymerase for FLMaV-1 Egyptian isolate compared with Italy, Montenegro, Saudi Arabia, Tunisia and Turkey isolates	95
31.	Phylogenetic analysis based on the nucleotide sequences showing the genetic relationship between the HSP70 gene for RNA- dependent RNA polymerase for the Egyptian isolate of FLMaV-1 with other homology on the GenBank	96
32.	Multiple sequence alignment of the HSP70 gene for RNA- dependent RNA polymerase for FLMaV-2 Egyptian isolate compared with Algeria, Italy, Saudi Arabia, Syria and Tunisia isolates	97
33.	Phylogenetic analysis based on the nucleotide sequences showing the genetic relationship between the HSP70 gene for RNA- dependent RNA polymerase for the Egyptian isolate of FLMaV-2 with other homology on the GenBank	98
34.	(A) An electron micrograph of phloem parenchyma cell in ultra-thin-section of FMV infected fig leaf showed groups of double membrane bodies (DMBs) (black	

	arrows) with evident signs of invagination (I) and deformation of nucleus(N), callose deposition began to appear beside cell wall(CW)(20000X). (B) Numerous DMBs in the cytoplasm of phloem parenchyma cell and distorted chloroplast (CH) with abnormal content of plastoglobules (white arrows) (20000X)	99
35.	(A) An electron micrograph of of mesophyll cells in ultra-thin-section of FMV infected fig leaf showed groups of Double-Membrane Bodies (DMBs) (red arrows) in cytoplasm. Nucleus (N) (12000X). (B) Ultra- thin-section of healthy mesophyll fig cells (12000X)	100
36.	(A) An electron micrograph of mesophyll cell in ultra- thin-section of healthy fig leaf (3000X). (B) Double membrane bodies (DMBs) (red arrows) and partially destroyed membranous bodies (black arrows) were showed in mesophyll cell in ultra-thin-section of infected fig leaf (3000X)	101
37.	An electron micrograph of portions of mesophyll cell in ultra-thin-section of FMV infected fig leaf showed a few of Double membrane bodies (DMBs) (yellow arrows), with evident signs of plasmolysis, cell wall malformation and callose deposition (CD)(red arrows) (2000X)	101
38.	(A) An electron micrograph of nucleus of a mesophyll cell in ultrathin section of FMV-infected fig leaf showing a bundle of filamentous virus like particles (arrow) next to the nucleolus (N), cell wall (CW) (20000X). (B) Close up of boxed area in A (50000X)	102
39.	(A) An electron micrograph showing an overall view of phloem tissues in healthy fig leaf (4000 X). (B) Phloem obliteration is obvious and profiles of filamentous semi- rigid virus-like particles (red arrows) surrounding chloroplast (CH), (black arrows) points to double- membrane bodies (DMBs) (8000 X)	103
		100

- 40. (A) An electron micrograph of phloem sieve element cell in ultra-thin-section of a healthy fig leaf showed a normal structures of nucleus (N) mitochondria (M), chloroplast (CH) and cell wall (CW) (10000X). (B) Swollen chloroplast (CH) with unusual photosynthetic structures such as dilated thylakoid (red arrows) and plastoglobules (white arrows) affected with double membrane bodies (DMBs) (black arrows) (20000X). (C) Deformed chloroplast with abnormal structures such as dilated thylakoid (red arrows), plastoglobules (white arrows) and cell wall (CW) begins lysis (30000X).(D) Chloroplast with large plastoglobules (white arrows) (30000X).
- 41. (A) An electron micrograph of xylem parenchyma cell in ultra-thin-section of FMV infected fig leaf showed malformed chloroplast (CH) with broken envelope (red arrows), groups of double membrane bodies (DMBs) (white arrows) and a number of plastoglobules (yellow arrows) (30000X).(B) Chloroplast of xylem parenchyma cell cleared double membrane bodies (DMBs) (black arrows), different sizes of vascular structures (VS) and masses of cytoplasm inclusion (red arrows) (20000X)..... 105

104

- 43. (A) An electron micrograph of xylem parenchyma cells (XP) in ultra-thin-section of a healthy fig leaf, XV= xylem vessels (5000X). (B) Double membrane bodies (DMBs) (red arrows) cleared in xylem parenchyma cells (XP) and xylem vessels (XV) in ultra-thin-section of
 - ix

	infected fig leaf, necrosis in xylem vessels (XV) was obvious (white arrows) (10000X)	107
44.	An electron micrograph of the epidermis in ultra-thin- section of FMV infected fig fruit showed swollen guard cells ,membrane invagination (I) and abnormal structures like large starch grain (LS), vascular structure (VS) (yellow arrows) and lipid droplets (red arrows) (4000X)	108
45.	(A) An electron micrograph of the epidermis in ultra- thin-section of FMV infected fig fruit showed Double membrane bodies (DMBs) (red arrows) with evident signs of plasmolysis in cell membrane (yellow arrows) and cell wall (CW) malformation (40000X). (B) Double membrane bodies (DMBs) adjacent to cell membrane (CM) (red arrows) and invaginations across cell wall (CW) (yellow arrows) were observed (40000X). (C) Abnormal channels across cell wall seem to be modified plasmodesmata (mpd) are shown, cell wall (CW) (30000X)	109
46.	Determination of total sugar contents in three infected fig species transmitted mechanically and by grafting comparing with healthy one	111
47.	Determination of total phenols in three infected fig species transmitted mechanically and by grafting comparing with healthy one	113
48.	Determination of total amino acids contents in three infected fig species transmitted mechanically and by grafting comparing with healthy one	115
49.	Determination of total indoles contents in three infected fig species transmitted mechanically and by grafting comparing with healthy one	117

50.	Determination of chlorophyll a in three infected fig species transmitted mechanically and by grafting comparing with healthy one
51.	Determination of chlorophyll b in three infected fig species transmitted mechanically and by grafting comparing with healthy one
52.	Determination of carotenoids in three infected fig species transmitted mechanically and by grafting comparing with healthy one
53.	Control of fig mosaic disease by short term thermotherapy treatment of shoots for two fig varieties 125
54.	Control of fig mosaic disease by long term thermotherapy treatment of shoots for two fig varieties 125
55.	Control of fig mosaic disease by simple one step freezing cryotherapy treatment of shoots for two fig varieties
56.	Control of fig mosaic disease by droplet vitrification cryotherapy treatment of shoots for two fig varieties
57.	Control of fig mosaic disease by combination of cryotherapy (droplet vitrification) with thermotherapy (hot water 38°C for 10-12 minutes) treatments of shoots for two fig varieties
58.	Control of fig mosaic disease by combination of cryotherapy (droplet vitrification) with thermotherapy (hot water 38°C for 4 hrs daily for 30 days) treatments of shoots for two fig varieties