Evaluating the role of some types of probiotic on the performance of rabbits in Egypt and South Africa

By

Tahany Ramadan Hussein Mohamed Ali

B.Sc., Agric, Ain Shams University (1999)

Diploma Genetics and Molecular Genetics University of Sadat city (2002)

M.Sc. of Genetic Engineering and Biotechnology Research Institute (Biotechnology Industrial – Fermentation). University of Sadat city, (2014).

> THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY In AFRICAN STUDIES (Natural Resources – Animal Resources)

Department of Natural Resources Faculty of African Postgraduate Studies Cairo University

Egypt

2022

Student's name: Tahany Ramadan Hussein

Degree: Doctor

Title: Evaluating the role of some types of probiotic on the performance of rabbits in Egypt and South Africa.

Supervising Committee: Dr Prof. Hassan Mohamed Sobhy- Dr Prof. Nagwa Abd El Hadi Ahmed – Dr Prof. Shawky Ahmed El Desouky El Medany

Dept.: Natural Resources – Animal Resources Degree award date: / /

ABSTRACT

The experiment aimed to study the effect of dietary supplementation probiotics (Saccharomyces boulardii and Bio-Plus) and organic selenium on hematological parameters, immune responses, meat quality, caecum content and productive performance of V-Line growing rabbits. A total number of 54 weaned V-Line rabbits were randomly divided into 6 equal treatments (9 rabbits / treatment). The 1st treatment (T1) served as control. The 2nd treatment (T2) rabbits received 0.6 g Saccharomyces boulardii (S.b.) / kg diet. The 3rd treatment (T3) rabbits received 0.4 g Bacillus subtilis and Bacillus iicheniformis (Bio-Plus) / kg diet. The 4th treatment (T4) rabbits received 0.6 g S.b. + 0.4 g Bio-Plus / kg diet. The 5th treatment (T5) rabbits received 0.3 mg organic selenium / kg diet. The 6th treatment (T6) rabbits received 0.6 g S.b. + 0.4 g Bio-Plus + 0.3 mg organic selenium / kg diet. The results showed that, supplementation of rabbit's diets with different types of probiotics and/or organic selenium led to significantly improvement in growth performance (body weight, body weight gain and feed conversion) of V-Line rabbits as compared to control group. Selenium % of rabbit's meat was increased (P < 0.05) in the rabbits of T5 and T6 as compared to other treatments. Thiobarbituric acid reactive substance was decreased (P<0.05) in the meat rabbits of T5 and T6 as compared to other treatments. IgG, IgM and IgA were significantly increased in the rabbits of T6 compared to rabbits in control group. Hb concentration, Ht %, glucose, total lipids, total protein and globulin were increased (P<0.05) in the rabbits of T6 as compared to control group. Volatile fatty acids (VFA) levels were significantly increased in the rabbits of T2, T3, T4, T5 and T6 compared to control group. Ammonia level was decreased (P<0.05) in the rabbits of T3, T5 and T6 compared to rabbits on control group. Bacteria count was decreased (P<0.05) in the rabbits of T3, T4, T5 and T6 compared to rabbits in control group. Supplementation different types of probiotics and organic selenium improved economic indicator of treated groups compared to the control group. In conclusion, supplementation of different types of probiotics and organic selenium (0.6 g S.b. + 0.4g Bio-Plus + 0.3 mg organic selenium / kg diet) had a beneficial effect on growth performance, immunological parameters and good health status of rabbit. Nevertheless, further studies are required to assess the efficacy of dietary probiotics on rabbits reared under hot environmental conditions.

Keywords: rabbits, probiotic, haematological profile, immune response, meat quality, productive performance and caecum characteristics.

List of Contents

	No.
Acknowledgments	
Abstract	
1-Introduction	1
2-Review	5
2.1-Rabbits production in Egypt	5
2.2-Probiotics	7
2.2.1- The concept of Probiotics	7
2.2.2- History of probiotics	7
2.2.3- Definition of probiotics and what is a probiotic?	7
2.2.4 - Action mechanisms of probiotics	10
2.3- Application aims of the use of probiotics as feed additives to control	11
pathogenic bacteria	
2.3.1- Enhance health and production performance	12
2.3.2- Decrease antibiotic use in animals farms	12
2.4- Yeast definition.	12
2.4.1- Yeast classification	14
2.4.2- Yeast survival in the gut and mode of action	14
2.5-Selenium	15
2.5.1- Biological functions of trace minerals	16
2.5.2- Organic trace minerals sources	17
2.5.3- Function of selenium	18
2.6-Influece of dietary probiotic, yeast and selenium on productive	19
performance	
2.6.1- Body weight and body weight gain	19
2.6.2- Feed intake and feed conversion ration	22
2.6.3- Morality rate	25
2.6.4- Carcass characteristics	28
2.7. Effect of dietary probiotics, yeast and selenium on blood contents	30
2.8- Effect of dietary probiotic yeast and selenium on immunity	32
2.9- Effect of dietary probiotic yeast and selenium on intestinal bacteria	36
2.10- Effect of dietary probiotic yeast and selenium on volatile fatty acids	40
and ammonia.	
2.11- Effect of dietary probiotic yeast and selenium on the meat quality	43
2.12- Effect of dietary probiotic yeast and selenium on economic efficiency	45
2.13- Rabbits in South Africa	46
2.13- Rabbits Farming for food security in South Africa	47
2.14- Using probiotics in feeding rabbits of South Africa	48
3.Materials and Methods	53
3.1-Management and feeding	53

List of Contents

	No.
3.2- Experimental design	53
3.3- Experimental measurements	55
3.3.1- Growth performance	55
3.3.1.1- Live body weight	55
3.3.1.2- Body weight gain (BWG)	55
3.3.1.3- Feed intake (FI)	55
3.3.1.4- Feed conversion ratio (FCR %)	55
3.3.2- Carcass characteristics	55
3.3.3- Blood picture	56
3.3.3.a- Red blood cell (RBC's)	56
3.3.3.b- White blood cell (WBC's)	56
3.3.3.c- Hemoglobin (Hb)	57
3.3.3.d- Hematocrit (%)	57
3.3.4- Blood metabolites	57
3.3.5-Immunological parameters	57
3.3.6- Meat analysis	57
3.3.7- Determination of vitamins in meat of rabbits	58
3.3.8- Caecum sample	58
3.3.8.a- Determination of pH, ammonia and total volatile fatty acid	59
3.3.8.b- Count of total bacteria in caecum	59
3.3.9- Economic indicator	59
3.3.10- Statical analysis	60
4.Results and Discussion	61
4.1- Growth performance	61
4.1.1- Live body weight	61
4.1.2- Body weight gain	63
4.1.3- Feed intake (g)	64
4.1.4- Feed conversion ratio%	65
4.2- Carcass trails	68
4.3- Chemical composition of rabbit's meat	70
4.4- Vitamins analysis in rabbit's meat	72
4.5- Immunoglobulin' assays	74
4.6- Hematological parameters	78
4.6.1- WBC's differential determines	79
4.7- Blood Metabolites	80
4.8- Caecum content characteristics	82
4.9- Economic indicator	87
Conclusion	89

List of Contents

Summary

References

الملخص العربي

90

List of Tables

No.		Pages
1	Yeast classification according to Herskowitz (1988)	12
2	Composition and chemical analysis of basal diet (%DM basis)	43
3	Effect of probiotics and organic selenium on body weight (BW, g) of V-Line growing rabbits during the period from 6 to 12 weeks of age.	62
4	Effect of probiotics and organic selenium on body weight gain (g) of V-Line growing rabbits during the period from 6 to 12 weeks of age.	63
5	Effect of probiotics and organic selenium on feed intake (g) of V- Line growing rabbits during the period from 6 to 12 weeks of age.	65
6	Effect of probiotics and organic selenium on feed conversion (FC) ratio of V-Line growing rabbits during the period from 6 to 12 weeks of age.	66
7	Effect of probiotics and organic selenium on carcass traits of V- Line growing rabbits at 12 wks of age.	69
8	Effect of probiotics and organic selenium on chemical composition of V-Line growing rabbits' meat.	70
9	Effect of probiotics and organic selenium on some vitamins analysis in meat of V-Line growing rabbits at 12 wks of age.	73
10	Effect of probiotics and organic selenium on immunoglobulin assays of V-Line growing rabbits at 12 wks of age.	75
11	Effect of probiotics and organic selenium on hematological parameters of V-Line growing rabbits at 12 wks of age.	78
12	Effect of probiotics and organic selenium on WBC's differential parameters of V-Line growing rabbits.	80

List of Tables

13	Effect of probiotics and organic selenium on blood metabolites parameters of V-Line growing rabbits.	81
14	Effect of probiotics and organic selenium on caecum content characteristics of V-Line growing rabbits at 12 wks of age.	82
15	Effect of probiotics and organic selenium on the economic indicator of V-Line growing rabbits.	88

List of figures

No.	Title	No.of nage
1	Schematic diagram illustrating potential or known mechanisms whereby probiotic bacteria might impact on the microbiota	9
2	Yeast cells (at extremely high magnification) show how they reproduce by budding.	11
3	Countries importing South Africa's rabbit meat. SARS (2020).	39
4	Countries importing South Africa's rabbits and hares. SARS, (2020).	40
5	Effect of probiotics and organic selenium on body weight (BW, g) of V-Line growing rabbits during the period from 6 to 12 weeks of age.	62
6	Effect of probiotics and organic selenium on feed conversion (FC) ratio of V-Line growing rabbits during the period from 6 to 12 weeks of age.	66
7	Effect of probiotics and organic selenium on selenium (%) of V-Line growing rabbits' meat.	71
8	Effect of probiotics and organic selenium on thiobarbituric acid of V-Line growing rabbits' meat.	72
9	Effect of probiotics and organic selenium on some vitamins analysis in meat of V-Line growing rabbits at 12 wks of age.	73
10	Effect of probiotics and organic selenium on vitamin E of V- Line growing rabbits' meat.	74
11	Effect of probiotics and organic selenium on IgG assays of V-Line growing rabbits.	75
12	Effect of probiotics and organic selenium on IgM assays of V-Line growing rabbits.	76
13	Effect of probiotics and organic selenium on IgA assays of V-Line growing rabbits.	77
14	Effect of probiotics and organic selenium on VFA in the caecum of V-Line growing rabbits.	84
15	Effect of probiotics and organic selenium on ammonia in the caecum of V-Line growing rabbits.	84
16	Effect of probiotics and organic selenium on bacteria count in the caecum of V-Line growing rabbits.	85

LIST OF ABBREVIATIONS

ALB	Albumin
Bio	Bio-plus
CF	Crude fiber
СР	Crude protein
DM	Dry matter
EE	Ether extract
EM	Effective Microorganisms
FAO	Food and Agriculture Organization of the United
	Nations
FCR	Feed conversion ratio
FI	Feed intake
FC	Feed conversion
Hb	Hemoglobin
IgG, IgM & IgA	Immunoglobulins
ITC	International Trade Centre's Council
LIN	Linseed oil
NAMC	National Agricultural Marketing
Sb	Saccharomyces boulardii
Se	Selenium organic
Sw	Slaughter weight
SARS	South African revenue services
TBARS	Thiobarbituric acid reactive substances
PUFA	Polyunsaturated fatty acids
VFA	Volatile fatty acid