

Cairo University Faculty of Veterinary Medicine Department of Virology

Investigation of spillover evidence of SARS-CoV-2 virus in dogs and cats in Egypt

A thesis presented by

Mervat Hamdy Elsaid

(B.V.Sc 2010, M.V.Sc 2017)

Faculty of Veterinary Medicine Cairo University

For Ph.D. degree of Veterinary Medicine (Virology)

Under the supervision of

Prof.Dr. Hussein Aly Hussein Ahmed

Professor of Virology Vice dean of Faculty of Veterinary Medicine Cairo University, Egypt

Prof.Dr. Ayman Hany Mahmoud

Metwally El-Deeb Professor of Virology Faculty of Veterinary Medicine Cairo University, Egypt

Prof.Dr. Momtaz Abd-Elhady Shahein Chief Researcher of Virology Director of Animal Health Research Institute (AHRI) Agriculture Research Centre, Egypt

Dr. Naglaa Mohamed Abd-Elaziz Hagag

Senior Researcher Director of Genome Research Unit Animal Health Research Institute (AHRI) Agriculture Research Centre, Egypt

(2022)

Cairo University Faculty of Veterinary Medicine Department of Virology

Name: Mervat Hamdy Elsaid Nationality: Egyptian Degree: PhD of Veterinary Medicine Specification: Virology Thesis Title: Investigation of spillover evidence of SARS-CoV-2 virus in dogs and cats in some Egyptian governorates

<u>Abstract</u>

SARS-CoV-2 zoonotic and reverse zoonotic transmission could be resulted from routine activities and interactions between humans and their companion animals. A combination of SARS-CoV-2 high mutation rate and homology of cellular ACE2 receptors enable SARS-CoV-2 to transcend species barriers and facilitate the viral transmission between humans and animals. The aim of this study to investigate spillover of SARS-CoV-2 between humans and companion animals with studying mutations of the detected SARS-CoV-2 spike glycoprotein and the effect of these mutations on the viral structure and function.

Oropharyngeal/Nasopharyngeal swabs, serum and blood samples were collected form 66 companion animals (33 cats and 33 dogs) which were close contact to SARS-CoV-2 positive owners from December 2020 to March 2021. Swabs were screened by rRT-PCR and some positive cases were confirmed by partial spike sequencing. Clinical pathology and pathological studies were also performed. Spillover of SARS-CoV-2 between humans and their companion animals were reported in Egypt with a rate of 30.3% of cats (10/33) and 24% of dogs (8/33) by using rRT-PCR. Partial spike gene sequencing of 6 positive samples collected in December 2020 were identical to SARS-CoV-2 that was detected in humans in Egypt in that time frame. Furthermore, the infected companion animals have suffered from lymphocytopenia, thrombocytopenia with elevation of ferritin, LDH, C-reactive protein and D-dimers levels. The latter infected animals have showed a wide range of clinical signs including

asymptomatic, mild and severe respiratory signs with some deaths in the infected cats. The dead cats exhibited multiple systematic pathological lesions in lung, heart, liver intestine and kidney. Thus, spillover of SARS-CoV-2 may be occurred between humans and pet animals.

Full spike sequencing for some detected SARS-CoV-2 in cats that were collected in December 2020, March 2021 and July 2021 has displayed 7 amino acid substitutions. Structural modelling has revealed that 4 of these mutations could affect the interaction with the neutralizing antibodies and others could influence S1/S2 cleavage, facilitate viral binding to the ACE2 host receptors and enhance viral infectivity. Bioinformatics analysis of ACE2 receptors in different animal hosts has provided in-depth investigation for RBD/ACE2 complex binding affinity and their relationship to SARS-CoV-2 infection susceptibility. Therefore, this thesis paves the way for studying SARS-CoV-2 host susceptibility in different animal species.

Keywords: SARS-CoV-2, companion animals, zoonoses, reverse zoonoses, spike, mutations, ACE2, structural modeling.

Contents

Title		
Chapter (1): Introduction		
Chapter (2): Review of literature		
1- General properties of SARS-CoV-2		
1.1. Morphology and structure of SARS-CoV-2	3	
1.2. Genomic organization of SARS-CoV-2	3	
1.3. Structure of spike glycoprotein	10	
1.4. Physical, chemical and biological properties of SARS- CoV-2		
1.5. SARS-CoV-2 replication cycle	11	
2- SARS-CoV-2 taxonomy and variants classification		
2.1. Tracking SARS-CoV-2 variants	13	
2.2. Different nomenclature systems for SARS-CoV-2 variants		
2.3. Different SARS-CoV-2 variants with spike mutations	17	
2.4. Different SARS-CoV-2 mutations and their effect	20	
3- Spillover and zoonotic transmission of coronaviruses		
4- Proposed spillover chain of SARS-CoV-2	27	
4.1. Role of bats in SARS-CoV-2 emergence and spillover chain		
4.2. Role of pangolins in SARS-CoV-2 emergence and spillover chain	29	
4.3.1. Role of minks in SARS-CoV-2 emergence, spillover chain and reverse zoonotic transmission	31	
4.3.2. Role of minks in SARS-CoV-2 emergence, spillover chain and zoonotic transmission	32	
4.4. Role of mouse and its cellular environment in SARS- CoV-2 adaptation, spillover chain and emergence of Omicron variant	32	

4.5. Role of animal products and food packaging in SARS- CoV-2 emergence and spillover chain	35
5- SARS-CoV-2 mutations could facilitate viral interspecies transmission	36
6- The relationship between ACE2 receptor structure and SARS-CoV-2 host susceptibility	38
7- Reverse zoonosis transmissibility of SARS-CoV- 2	39
7.1. SARS-CoV-2 spillover and reverse zoonosis in companion animals (Cats, dogs and pet ferrets)	41
7.2. SARS-CoV-2 spillover and reverse zoonosis in zoo animals	43
7.3. SARS-CoV-2 spillover and reverse zoonoses in farm animals (Pigs, cattle, poultry and sheep)	44
8- Animal-to-animal transmission of SARS-CoV-2	45
9- Experimental infections of SARS-CoV-2	45
10- SARS-CoV-2 mechanical transmission via contaminated surfaces	46
11- SARS-CoV-2 mechanical transmission via insects and rodents	47
Chapter (3): Published papers	49
3.1. SARS-CoV-2 infection of companion animals in some Egyptian governorates: risk of spill over and reverse zoonoses	49
3.2. Mutations of the SARS-CoV-2 spike glycoprotein detected in cats and their effect on its structure and function	86
Chapter (4): Discussion	136
Chapter (5): Conclusion and recommendations	159
Chapter (6): Summary	160
Chapter (7): References	162

List of Figures:

Title	Page
Chapter (3): Published papers	
3.1. SARS-CoV-2 infection of companion animals in	
Egyptian governorates: risk of spill over and reverse	9
zoonoses	1
Figure (1). Epidemiological data and case history of the	68
collected samples	00
Figure (2). The rRT-PCR results of the pet animals in relation to the severity of the clinical signs	69
Figure (3). Molecular phylogenetic tree of the sequenced	70
samplesFigure (4). Complete blood count (CBC) of SARS-CoV-2positive and negative companion animals	71
Figure (5). Pathological findings of lung, heart and intestine of COVID-19 positive cat	72
Figure (6). Pathological findings of liver, kidney and spleen of COVID-19 positive cat.	73
3.2. Mutations of the SARS-CoV-2 spike glycoprotei	n
detected in cats and their effect on its structure and function	
Figure (1). The structure of the spike glycoprotein and its coding gene	93
Figure (2). COVID-19 outbreaks in animals	94
Figure (3). Phylogenetic analysis of the SARS-CoV-2 sequences	102
Figure (4). The overall distribution of the spike protein mutations observed in the studied sequences and the impact of (S1051Y) mutation on its structure and function	108
Figure (5). Conservation of residues involved in direct contact between the receptor and the viral RBD	113
Figure (6). Phylogenetic analysis of the residues near the receptor-viral RBD interface	114

Figure (7). Isosurface representations and electrostatic (Coulombic) maps of the predicted ACE2 receptor structures for various animal hosts	115
Supplementary Figure (S1). The impact of the A570V mutation of the spike protein	134
Supplementary Figure (S2). Predicted RBD with the L452R mutation in complex with the human receptor and the RBD-receptor complexes in various other hosts	135

List of Tables:

Title	Page
Chapter (2): Review of literature	
Table (1) Genomic organization of SARS-CoV-2	6
according to the Wuhan strain:	6
Table (2). Definitions and examples for different	14
categories of SARS-CoV-2 variants.	14
Table (3). GISAID clades, Pango lineages with key	16
Table 4. SARS-CoV-2 variants with different proposal	17
nomenclature systems with key spike mutations	17
Table (5). Different SARS-CoV-2 mutations referenced	20
to Wuhan virus, their position and their effect.	
Chapter (3): Published papers	
3.1. SARS-CoV-2 infection of companion animals in	n some
Egyptian governorates: risk of spill over and revers	se
zoonoses	
Table (1). Epidemiological data and case history of the	74
collected samples	/4
Table (2). Inflammatory parameters, fibrinolysis and	
clotting factors for SARS-CoV-2 (positive and negative)	75
cat and dog samples	
Supplementary Table (S1). The detailed Epidemiological	76
data and case history of the collected samples	82
Supplementary Table (S2). Positive rRT-PCR result	
Supplementary Table (S3). Sequence identity matrix	83
Supplementary Table (S4). Hematology of SARS-CoV-2	0.4
(positive and negative) cat samples	84
Supplementary Table (S5). Hematology of SARS-CoV-2	05
(positive and negative) dog samples	85
3.2. Mutations of the SARS-CoV-2 spike glycoprote	ein
detected in cats and their effect on its structure and	
function	
Table (1). Amino acid substitutions in the sequenced	
samples in comparison to some circulating variants in	104
human and cats	

Table (2). Substitutions in key residues involved in viral recognition on the ACE2 surface in selected species	
Supplementary Table (S1). The detailed molecular structure of the spike gene with positions and lengths of its various parts	
Supplementary Table (S2). Full Spike gene-specific primers used for conventional RT-PCR and sequencing	130
Supplementary Table (S3). Case history of companion cats and their owners infected with SARS-CoV-2 and the veterinarian in contact with the infected cats with cycle threshold (CT) values by real-time RT-PCR	131
Supplementary Table (S4). Identity matrix of the sequenced samples along with some circulating SARS-CoV-2 variants	132
Supplementary Table (S5). Identity matrix of the aligned selected sequences residues present at the binding interface between the ACE2 and the viral RBD in different species	133

List of Abbreviations:

ACE2	Angiotensin-converting enzyme 2
BaTG13	Bat coronavirus
СН	Central helix
CDR	Complementarity-determining region of antibody
CMs	Convoluted membranes
COVID-19	Coronavirus Disease 2019
CRP	C-reactive protein
CTD1	C-terminal domain-1
CTD2	C-terminal domain-2
DMSs	Double-membrane spherules
DMVs	Double-membrane vesicles
Ε	Envelope protein
ERGIC	Endoplasmic Reticulum–Golgi Intermediate
LAGIC	Compartment
FMV	Formerly monitored variants
FP	Fusion peptide
FPPR	Fusion peptide proximal region
HR1	Heptad repeat 1
HR2	Heptad repeat 2
IC	Intracellular
LDH	Lactate dehydrogenase
Μ	Membrane protein
MP789	Pangolin coronavirus
Ν	Nucleocapsid protein
NTD	N-terminal domain
NSP	Non-structural protein
NTD	N-terminal domain
OIE	Office International des Épizooties
ORF	Open reading frame
+ssRNA	Positive sense single stranded ribonucleic acid
RdRp	RNA dependent RNA polymerase
RBD	Receptor binding domain
RBM	Receptor binding motif
ROS	Reactive Oxygen Species
RT-PCR	Reverse transcriptase Polymerase Chain Reaction

rRT-PCR	Real Time Reverse Transcriptase Polymerase Chain
	Reaction
SARS-CoV-2	Severe acute respiratory syndrome coronavirus 2
S	Spike glycoprotein
SP	Structural protein
ТМ	Transmembrane
UTR	Untranslated region
UK	The United Kingdome
USA	The United States of America
VOI	Variants of interest
VOC	Variants of concern
VUM	Variants under monitoring
WHO	World Health Organization
WOAH	World Organization for Animal Health