

Arab Republic of Egypt Mansoura University Faculty of Agriculture Dept. of Agri. Engineering

Allocation of Irrigation Water under Conditions of Limited Water Supply Using Precision Agriculture Techniques

By

NOHA ELSAYED ABDELWARTH MOHAMED ABDELRAHIM

B. Sc. in Agric. Sciences (Agric., Eng.), Mansoura University., 2010 M. Sc. in Agric. Sciences (Agric., Eng.), Mansoura University., 2016

A Thesis

Submitted In Partial Fulfilment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

IN

AGRICULTURAL SCIENCE (AGRICULTURAL ENGINEERING)

Supervisors

Prof. Dr.

Hesham Nagy Abdelmageed

Prof. of Farm Machinery and Power, Agricultural Engineering Department, Faculty of Agriculture, Mansoura University

Prof. Dr.

Mohamed Maher Mohamed Ibrahim

Prof. of On-farm Irrigation and Drainage Engineering, Agricultural Engineering Dept. Faculty of Agriculture.

Dr.

Hashem Mohamed Mahmoud

Researcher of On-farm Irrigation and Drainage Engineering, On-farm Irrigation and Drainage Engineering Department, Agricultural Engineering Research Institute, Agricultural Research Center

2022

CONTENTS

	Page
1- INTRODUCTION	1
2- REVIEW OF LITERATURE	3
2.1 Water problems at Egypt	3
2.2 Irrigation water management under water stress conditions	4
2.2.1 Evapotranspiration estimation	4
2.2.1.1 Evapotranspiration estimation based on meteorological data	4
2.2.1.2 Evapotranspiration estimation based on surface energy balance	5
2.2.2 Yield response factor to water stress	6
2.2.3 Deficit irrigation management	6
2.3 Irrigation water management for rice under water stress conditions	7
2.3.1 Irrigation water requirements of lowland rice	7
2.3.2 Rice yield response to water stress	9
2.3.3 Deficit irrigation management for Rice	10
2.4 The significance of using precision agriculture at irrigation water management	11
2.4.1 Remote sensing as an effective tool for precision agriculture	12
2.4.1.1 Landsat Imagery	12
2.4.1.1.1 Landsat 8 mission	12
2.4.1.1.2 Landsat 7 mission:	13
2.4.1.2 Earth Engine Evapotranspiration Flux. "EEFLUX" Platform	14
2.4.2 Using remote sensing for irrigation water management	16
2.4.2.1 Actual Evapotranspiration (ETa) Estimation	17
2.4.2.1.1 ETa Estimation using EEFLUX	17
2.4.2.1.2 Estimating ETa for rice fields based on surface energy balance	18
2.4.2.2 Crop Water Stress Estimation:	20
2.5 Genetic algorithms approach for irrigation water allocation	21
2.5.1 Genetic algorithms	21
2.5.2 Irrigation water allocation using genetic algorithms	22
3- METHODOLOGY AND APPROACH	24

3.1 Allocation of a crop, variety, study area and theoretical framework:	24
3.1.1 Crop choice	24
3.1.2 Study area choice	25
3.1.3 Theoretical Framework	26
3.1.3.1 Actual evapotranspiration (ETa)	26
3.1.3.1.1 Actual evaporanspiration estimation based on FAO Penman – Monteith	
method	26
3.1.3.1.2 Estimating Actual Evapotranspiration Using METRIC Model	28
3.1.3.2 Readily available water (RAW)	29
3.1.3.3 The relationship of the normalized difference vegetation index (NDVI) and	
land surface temperature (LST)	29
3.1.3.4 water stress impact calculations:	30
3.1.3.4.1. Rice yield response factor	30
3.1.3.4.2. Harvest index (HI)	31
3.1.3.4.3 Water Productivity (WP)	31
3.2 Preparation and organization of required data	31
3.2.1 Calculation of reference evapotranspiration (ETo) using FAO Cropwat model	32
3.2.2 Estimating rice Rice yield response factor (Ky)	32
3.2.3 Preparation of Remote sensing datasets	33
3.2.3.1 Downloading RS Datasets	33
3.2.3.2 Masking the images and raster datasets to study area extent	34
3.3 Limited Farm Experiment	35
3.3.1 Experimental site	35
3.3.2 Experimental setup	39
3.3.3 Equipment	39
3.3.3.1 Development Irrigation Equipment	39
3.3.3.1.1 Irrigation pump	40
3.3.3.1.2 Water Meter	41
3.3.3.1.3 Water hoses	42
3.3.3.1.4 Valves:	42
3.3.3.2 Rice grains thresher	42
3.3.4 Experimental measurements	43
3.3.4.1. Irrigation water scheduling measurements	43
3.3.4.1.1 Effective root zone depth (Z)	43
3.3.4.1.2 Soil water content measurements	43

3.3.4.2. Yield components measurements	44
3.3.4.2.1 Grain yield weight, g	44
3.3.4.2.2 Straw yield weight, g	44
3.3.4.2.3 Water content in grains, %	44
3.3.4.2.4 Water content in straw, %	44
3.3.4.2.5 1000 grains weight (Wg)	44
3.3.4.2.6 Grains filling ratio (Fg), %	44
3.3.5 Calculations	45
3.3.5.1. Irrigation water requirements calculations	45
3.3.5.1.1 Water requirements for land preparation	45
3.3.5.1.2 Irrigation water requirements	45
3.3.5.2 Yield response factor to water stress	46
3.3.5.3 Studying and Evaluating of Deficit irrigation scenarios	47
3.3.6 Field management	47
3.3.6.1 Layout Preparation	48
3.3.6.2 Nursey establishment	48
3.3.6.3 Transplanting	48
3.3.6.4 Harvesting and threshing	48
3.3.7 Instrumentation and technique	49
3.3.7.1 Slope measurement	49
3.3.7.2 Distance measure	50
3.3.7.3 Water flow measurement	51
3.3.7.4 Soil moisture measurement	51
3.3.7.5 Weight measurements	52
3.3.7.6 Filling ratio measurement	53
3.3.7.7 Grain moisture measurements	53
3.3.8 Statistical analysis	55
3.4 Development a GIS-based model for irrigation water allocation	55
3.4.1 Parameters Creation Toolset	55
3.4.1.1 CWSI Estimation Tool	58
3.4.1.2 Kc and Ks estimation Tool	58
3.4.1.3 ETa Calculation Tool	59
3.4.2 Water Productivity Estimation Toolset	59
3.4.2.1 Seasonal ETa Estimation/ Seasonal Ks Estimation/ Seasonal CWSI	
Estimation tools	59

3.4.2.2 Yield Production Estimation Tool	60
3.4.2.3 Irrigation water amounts tool	60
3.4.2.4 Water Productivity Estimation Tool	60
3.4.3 Data Editing and Completing Toolset	61
3.4.3.1 Rice crop identification tool	61
3.4.3.2 Cloud Masking Tool	62
3.4.3.3 Rice Fields Extracting Tool	62
3.4.3.4 CWSI Completing Tool	62
3.4.3.5 Ks Completing Tool	63
3.4.3.6 Daily Rasters Completing Tool	63
3.4.3.7 Creating Daily ETo Tool	63
3.4.4 Validation of the ArcToolbox	63
3.5 Spatial irrigation water allocation using genetic algorithms	64
3.5.1 Preparation of the required data	64
3.5.2 Implementing of Genetic algorithms	65
3.5.2.1 Initialization of Population (Coding)	65
3.5.2.2 Fitness function:	66
3.5.2.3 Estimating growth water requirements	66
3.5.2.4 Constraints:	66
3.5.2.5 Selection	66
3.5.2.6 Crossover	66
3.5.2.7 Mutation	67
3.5.2.8 Error function	67
3.5.3 irrigation water scheduling	67
4- RESULTS AND DISCUSSION	68
4.1 Limited Experiment for Estimating Yield Response to Water Stress:	68
4.1.1 Irrigation Water management	68
4.1.1.1 Percolation rate	68
4.1.1.2 Reference Evapotranspiration	68
4.1.1.3 Crop Evapotranspiration during nursery stage and pre-treatments period	69
4.1.1.4 Soil moisture content for the treatments	71
4.1.1.5 Actual evapotranspiration consumption during the treatments (ETa)	74
4.1.1.6 Crop Yield Response Factor to Water Stress (Ky)	77
4.1.2 Evaluation of Deficit Irrigation Scenarios Over the Growth Stages	79

4.1.2.1 Impact of Deficit Irrigation Scenarios Based on Yield Measurements	80
4.1.2.1.1 yield productivity measurements	80
4.1.2.1.2 Grain filling measurements	83
4.1.2.2 Impact of Deficit Irrigation Scenarios Based on Water Use	88
4.2 GIS Based Model for Assessment of Irrigation Water Allocation	94
4.2.1 Rice Fields Identification	94
4.2.2 Normalized Distribution Vegetation Index (NDVI) Cycle for the Rice Crop Season	95
4.2.3 Crop coefficient (Kc) Cycle for the Rice Crop Season	96
4.2.4 Seasonal reference evapotranspiration (ETo)	99
4.2.5 Evaluating the seasonal values of crop water stress index (CWSI) and water stress	
coefficient (Ks)	103
4.2.6 Actual evapotranspiration (ETa) values throughout the Season	111
4.2.7 Yield Production and Water Productivity	114
4.2.8 Validation of the ArcToolbox	119
4.3 Spatial irrigation water allocation using genetic algorithms	120
4.3.1 Spatial water allocation under full water consumption	120
4.3.2 Spatial water allocation under 92% of water consumption	123
4.3.3 irrigation water scheduling for the new allocation	127
5- SUMMARY AND CONCLUSION	130
6- REFRENCES	137
APPENDICES	146
APPENDIX (A)	146
APPENDIX (B)	1.02
	163
APPENDIX (C)	172
APPENDIX (D)	181
ARABIC SUMMARY	183

LIST OF TABLES

Table		Page
2.1	CROPWAT Ky values for rice	9
2.2	Landsat 8 OLI and TIRS bands, wavelength (μm) and their uses	13
2.3	Landsat 4-5 TM and Landsat 7 ETM+ bands, wavelength (μm) and	
	their uses	14
2.4	Description of EEFLUX products	15
2.5	Extracted from Putri et al., (2019), classification of TVDI values	21
3.1	Images of Landsat 7 and Landsat 8.	33
3.2	Mechanical, hydrological, and chemical analysis data	36
3.3	the specifications of the centrifugal pump	40
3.4	Specifications of the Large Vogel Plot Thresher	42
3.5	Timeline of the seasons	48
3.6	Specifications of Sokkia Auto Level B40 Automatic compensator	
	(738340) B40	49
3.7	General specifications of Distance meter laser rangefinder	50
3.8	specifications of The Cast Iron Industrial Water Meter Horizontal	
	Dry Dial LXLG-800B	51
3.9	Specifications of Soil moisture meter PMS-714	51
3.10	Specifications of the weight scales	52
3.11	Specifications of the Laboratory Aspirator	53
3.12	specifications of Riceter E - Handheld Portable Moisture Tester –	51
4.1	Correlation among yield production techniques and relative	54
	evapotranspiration	79
4.2	Equation relating relative evapotranspiration and Harvest index % at	
	various growth stages and full growth season	81
4.3	Compare means of treatments: yield production (ton/ha)	82
4.4	Compare means of treatments: harvest index (%)	83
4.5	Equation relating relative evapotranspiration and 1000g weight at	
	various growth stages and full growth season	84

4.6	Equation relating relative evapotranspiration and grain filling ration	
	at various growth stages and full growth season	85
4.7	Compare means of treatments: 1000 grain weight (gm)	87
4.8	Compare means of treatments: Grain filling Ratio (%)	87
4.9	Equations relating relative evapotranspiration and added water	
	amounts at various growth stages and full growth season treatments	89
4.10	Equation relating relative evapotranspiration and water productivity	
	at various growth stages and full growth season	91
4.11	Equation relating relative evapotranspiration and evapotranspiration	
	water productivity at various growth stages and full growth season	92
4.12	Compare means of treatments: water productivity (kg/ m ³)	93
4.13	Compare means of treatments: Evapotranspiration water productivity	
	(kg/m ³)	93
4.14	Conclusion of the statistics of CWSI maps	104
4.15	Conclusion of the statistics of KS maps	104
4.16	equations relating CWSI and Ks	105
4.17	Number of irrigations and irrigation intervals (day) throughout the	
	season	127
4.18	Recommended irrigation scheduling for the segements during the	
	water stress tretments under 100% of water consumption.	128
A-1	Average daily meteorological data records and ETo for 2018 summer	
	seasons	146
A-2	Average daily meteorological data records and ETo for 2019 summer	
	seasons	150
A-3	ETc calculation for rice during 2018 season	155
A-4	ETc calculation for rice during 2018 season	159
B-1	The Measurements of production and water use for limited	
	experiment for season 2018	163
B-2	Measurements of production and water use for limited experiment	
	for season 2019	164
B-3	Average Measurements of production and water use for limited	
	experiment	165
B-4	The ANOVA procedure for yield production (ton/ha)	166

B-5	Effect of DI level on yield production	166
B-6	Effect of growth stage on yield production	166
B-7	The ANOVA procedure for harvest index (%)	167
B-8	Effect of DI level on harvest index (%)	167
B-9	Effect of growth stage on harvest index (%)	167
B-10	The ANOVA procedure for 1000 grain weight (gm)	168
B-11	Effect of DI level on 1000 grain weight (gm)	168
B-12	Effect of growth stage on 1000 grain weight (gm)	168
B-13	The ANOVA procedure for Grain filling ratio (%)	169
B-14	Effect of DI level on Grain filling ratio (%)	169
B-15	Effect of growth stage on Grain filling ratio (%)	169
B-16	The ANOVA procedure for Water productivity (kg/ m^3)	170
B-17	Effect of DI level on Water productivity (kg/m ³)	170
B-18	Effect of growth stage on Water productivity (kg/m ³)	170
B-19	The ANOVA procedure for Evapotranspiration water productivity	
	(kg/ m ³)	171
B-20	Effect of DI level on Evapotranspiration water productivity (kg/ m^3)	171
B-21	Effect of growth stage on Evapotranspiration water productivity (kg/	
	m ³)	171
D-1	Recommended irrigation scheduling for the segments during the water	181
	stress treatments under water depth for 92% of water plan	

LIST OF FIGURES

Fig. No.		Page
Fig 2.1	Extracted from IRRI, (2015), main growth stages of rice	7
Fig 2. 2	Extracted from Bouman et al., (2007), Water balance of lowland rice	8
	Conceptual diagram of the triangular/trapezoidal feature space that is	
Fig 3. 1	constructed by land surface temperature and vegetation index	30
Fig 3. 2	Flowchart of data preparation procedures	32
Fig 3. 3	Images of Landsat 7 and Landsat 8.	35
Fig 3. 4	The experimental site	37
Fig 3. 5	The Experimental Layout	38
Fig 3. 6	The movable irrigation equipment	39
Fig 3. 7	Schematic diagram for the movable irrigation equipment	40
Fig 3. 8	The water meter LXLG 800	41
Fig 3. 9	Large Vogel Plot Thresher	43
Fig 3. 10	Spreading seedlings under sun	49
Fig 3. 11	Automatic rice grains thresher	49
Fig 3. 12	Sokkia Auto Level B40 Automatic compensator (738340) B40	49
Fig 3. 13	Soil moisture meter PMS-714	51
Fig 3. 14	Laboratory Aspirator	53
Fig 3. 15	Riceter E - Handheld Portable Moisture Tester – Rice	54
	Flowchart of GIS-Based model for irrigation water allocation	
Fig 3. 16	procedures	56
Fig 3. 17	Collecting samples at training samples manager.	62
Fig 3. 18	The procedure of creating TINs.	63
	Daily values of Reference evapotranspiration (mm/day) throughout	
Fig 4. 1	(a) season of 2018, (b) season of 2019	69
	Daily values of maximum evapotranspiration (mm/day) during	
	nursery stage and pre-treatments period (a) season of 2018, (b) season	
Fig 4. 2	of 2019	70
	Soil moisture content for the treatments at (a) vegetative, (b)	
Fig 4. 3	reproductive, and (c) ripening stages for the season 2018	72

	Soil moisture content for the treatments at (a) vegetative, (b)	
Fig 4. 4	reproductive, and (c) ripening stages for the season 2019	73
	Actual evapotranspiration consumed for the treatments at (a)	
	vegetative, (b) reproductive, and (c) ripening stages for the season	
Fig 4. 5	2018	75
	Actual evapotranspiration consumed for the treatments at (a)	
	vegetative, (b) reproductive, and (c) ripening stages for the season	
Fig 4. 6	2019	76
	The relation between the relative yield reduction and the relative	
	evapotranspiration of Vegetative stage, Reproduction stage, Ripening	
Fig 4. 7	stage, and full growth period. for	78
	Average values of (a) grain yield (ton/ha) and (b) harvest index	
Fig 4. 8	throughout growth stages treatments	80
	The relationship between Harvest index % and Eta/ETm for	
	Vegetative stage, Reproduction stage, Ripening stage, and full growth	
Fig 4. 9	period for the average of the seasons 2018 and 2019	81
	Average values of (a) 1000 grains weight (gm) and (b) Grain filling	
Fig 4. 10	ratio throughout growth stages treatments	84
	The relationship between 1000 grains weight (g) and ETa/ETm for	
	(aVegetative stage, Reproduction stage, Ripening stage, and full	
Fig 4. 11	growth period for the average of the seasons 2018 and 2019	85
	The relationship between grains filling ratio and Eta/ETm for	
	Vegetative stage, Reproduction stage, Ripening stage, and full growth	
Fig 4. 12	period for the average of the seasons 2018 and 2019	86
	Average total depth added to the treatment throughout the season and	
Fig 4. 13	during deficit irrigation scenarios.	88
	The relationship between added water amounts and Eta/ETm of	
	Vegetative stage, Reproduction stage, Ripening, and full growth	
Fig 4. 14	period treatments for the average of the seasons 2018 and 2019	89
	Average values of (a) water productivity (kg/ m^3), (b)	
	Evapotranspiration water productivity (kg/m ³) throughout growth	
Fig 4. 15	stages treatments	90

	The relationship between water productivity and Eta/ETm of	
	Vegetative stage, Reproduction stage, Ripening stage, and full growth	
Fig 4. 16	period for the average of the seasons 2018 and 2019	91
	The relationship between evapotranspiration water productivity and	
	Eta/ETm of Vegetative stage, Reproduction stage, Ripening stage,	
Fig 4. 17	and full growth period for the average of the seasons 2018 and 2019	92
Fig 4. 18	Average daily NDVI cycle throughout the season	96
Fig 4. 19	Average daily Kc cycle throughout the season	96
	Relationship between NDVI and LST at (a) 16 May, (b) 24 June, (c)	
Fig 4. 20	03 July, (d) 26 July, (e) 11 August, and (f) 12 September	98
	the regression scatter plot between the average estimated Kc and	
Fig 4. 21	average Adjusted FAO Kc	99
Fig 4. 22	Average daily CWSI values throughout the season	103
	The relationship between Ks and CWSI during (a) Vegetative, (b)	
Fig 4. 23	Reproductive, (c) Ripening stages, and (d) Full growth season.	110
	Average daily actual evapotranspiration values (ETa, mm)	
Fig 4. 24	throughout the season	111
	Relationship between yield production and actual evapotranspiration	
Fig 4. 25	reduction	114
	Relationship between evapotranspiration water productivity and	
Fig 4. 26	actual evapotranspiration reduction	115
	the relationship between ETa/ETm , (a) WP and(b) ETWP for	
Fig 4. 27	ripening stage.	119
	Comparison among (a) Current irrigation water consumption for	
	each canal, new irrigation water allocation and new irrigation water	
	allocation under 92 % of water consumption, (b) current yield	
	production for each canal, predicted yield production and predicted	
Fig 4. 28	yield production under 92 % of water consumption	124
C.1	Irrigation Water Allocation Assessment Toolbox	172
C.2	CWSI Estimation Tool	173
C.3	Kc & Ks Estimation Tool	173
C.4	ETa Estimation Tool	174
C.5	Yield Production Estimation Tool	175

C.6	Irrigation Water Amounts Tool	176
C.7	Water Productivity Estimation Tool	176
C.8	Rice fields identification tool	177
C.9	Cloud Mask Tool	177
C.10	CWSI Completing Tool	178
C.11	Rice Fields Extraction	178
C.12	Daily Data Completing	179
C.13	Ks Completing Tool	179
C.14	Daily ETo Completing	180

LIST OF MAPS

Map No.		Page
	Extracted from de Oliveira Costa et al., (2020), Spatial distribution	17
2.1	of the actual evapotranspiration (ETa) and Crop coefficient (Kc)	
	of maize for the various periods during the year 2016.	
	Extracted from Sari et al., (2013), Spatial distribution of seasonal	18
2.2	actual evapotranspiration in the northern part of West Java in dry	
	season 2004,	
3.1	The study area irrigation network	25
3.2	The segments of the study area relating to the canals.	65
4.1	Study area classification	95
4.2	Maps of reference evapotranspiration summation (ETo, mm) for	
4.2	season months	100
4.2	Cont. Maps of reference evapotranspiration summation (ETo, mm)	
4.2	for season months	101
4.2	Cont. Maps of reference evapotranspiration summation (ETo, mm)	
4.2	for season months	102
4.3	Average CWSI values (mm) for all growth stages:	106
4.3	Cont. Average CWSI values (mm) for all growth stages:	107
4.4	Average Ks values (mm) for all growth stages	108
4.4	Cont. Average Ks values (mm) for all growth stages	109
4.5	Maps of actual evapotranspiration summation (mm) for growth	112
4.5	stages	112
4 5	Cont. Maps of actual evapotranspiration summation (mm) for	
4.5	growth stages	113
	The spatial distribution of the stressed growth stages throughout the	116
4.0	season.	110
47	The spatial distribution of (a) yield production in (ton/ha)	117
4./	(b) irrigation water consumption in (m^3/ha)	117
4.8	The spatial distribution of (a) Water productivity (kg/m^3)	118
	(b) Evapotranspiration water productivity (kg/m ³)	110
4.9	New growth stage distribution	121
4.10	New spatial relative evapotranspiration	121

4.11	New spatial water allocation (m^3/m^2)	122
4.12	New predicted spatial yield production (ton/ha)	122
4.13	New spatial relative evapotranspiration under 90% of irrigation water consumption	125
4.14	New spatial water allocation (m ³ /m ²) under 90% of irrigation water consumption	125
4.15	New predicted spatial yield production (m^3/m^2) under 90% of irrigation water consumption	126

LIST OF ABBREVIATIONS

Symbol

Description

Ab	Albedo
ALL	Full Growth Season
В	Biomass (kg)
BCM	Billion cubic meter
BREBS	Bowen-Ratio Energy Balance System
CWSI	Crop Water Stress Index (.)
DEM	Digital Elevation Model (m)
DI	Deficit Irrigation
DOY	Day of Season
D _{sat}	Soil water content at saturation (mm)
Ea	Field application efficiency (%)
e _a	Actual vapour pressure (kPa)
EEFLUX	Earth Engine Evapotranspiration Flux
ERF	Effective rainfall (mm),
e_s	Saturation vapour pressure (kPa)
ET	Evapotranspiration (mm)
ET _a	Actual Evapotranspiration (mm)
ET_a/ET_m	Relative Evapotranspiration (.)
ET_m	Maximum Evapotranspiration (mm)
ETM+	Enhanced Thematic Mapper
ET_0	Reference evapotranspiration (mm/day)
$ET_{o}F$	Fraction of grass-based reference crop evapotranspiration (.)
ETr	Alfalfa Reference Evapotranspiration (mm)
ETrF	Fraction of Alfalfa -based reference crop evapotranspiration (.)
ETWP	Evapotranspiration Water Productivity (kg/m ³)
$ET_{\lambda E}$	Estimated actual evapotranspiration using BREBS data (mm)
F_{g}	Grains Filling Ratio (%)
F_{v}	Fraction of soil surface (.)

G	Soil heat flux density (MJ $m^{-2} day^{-1}$)
GEE	Google Earth Engine,
G_{f}	Filled grains weight (gm)
G_W	Grains weight (gm)
h	The Plant height for each growth stage [m] (0.1 m $< h < 10$ m).
Н	Sensible Heat Flux (W m ⁻²)
HI	Harvest Index (%)
IWR	Irrigation water requirements (m ³)
K _C	Crop coefficient (.)
K _{C end}	Crop coefficient at end of the late season growth stage (.)
K _{C mid}	Crop coefficient during the mid.season growth stage (.)
K _r	Saturated hydraulic conductivity (mm/day)
K _s	Water Stress Coefficient (.)
K_y	Yield Response Factor to Water Stress (.)
LSD	Least Significant Difference (.)
LE	Latent Energy Consumed by ET_a (W m ⁻²)
LST	Land Surface Temperature (°K)
LST _{cold}	The temperature of well-irrigated pixel which is almost covered fully by vegetation (Cold pixel)
LST _{hot}	The temperature of the crop covered pixel with maximum value of water stress (Hot pixel).
METRIC	Mapping Evapotranspiration at High Resolution with Internalized Calibration
MODIS	Moderate-resolution Imaging Spectroradiometer
NDVI	Normalized Distribution Vegetation Index
NIR	Net irrigation requirement (mm),
OLI	Operational Land Imager
Р	Daily percolation rate out of the root zone (mm)
р	Evapotranspiration depletion factor (%)
PA	Precision Agriculture
PRO	Reproductive Stage
0	Irrigation water amount (m^3)

\mathbb{R}^2	Coefficient of Determination (.)
RAW	Readily available water (mm)
RH_{min}	Daily minimum relative humidity (%)
RIP	Ripening Stage
RP	Required ponding depth (saturation depth) (mm),
R_n	Net Radiation (W m ⁻²)
RS	Remote sensing technology
SAT	Amount of water added to saturate the soil (mm)
SEBAL	Surface Energy Balance Algorithm for Land
SLC	Scan Line Corrector
SMC	Soil moisture content in the effective root zone (mm)
SP	Seepage and percolation (mm),
St	Straw weight (gm)
SVM	Support Vector Machine Algorithm.
T_a	The Air Temperature (°C)
T_c	The Leaf Temperature (°C)
$T_c - T_a$	The Leaf-Air Temperature Difference
$(T_c - T_a)_{ll}$	The Non-Water-Stressed Baseline
$(T_c-T_a)_{ul}$	The Non-Transpiring Baseline
T _{cold}	Cold pixel, LST of the well-irrigated pixel which is almost covered fully by vegetation.
T _{hot}	Hot pixel, the temperature of the crop covered pixel with maximum value of water stress
TIRS	Thermal Infrared Sensor
TIN	Triangulated Irregular Network
TM	Thematic Mapper
T_s	(Land Surface Temperature) LST, Canopy Temperature in Cropped Land, (°C)
TVDI	Temperature Vegetation Dryness Index (.)
u_2	Wind speed at 2 m height (m/s)
VEG	Vegetative Stage
WD	Water depth in the field (mm)

XVII

Wg	1000 grains weight (gm)
WP	Water productivity (kg/m ³)
WRS-2	Worldwide Reference System-2
W_P	Soil water content at wilting point in percentage of volume (%)
Ya	Actual yield (kg/ha)
Y_m	Maximum Yield (kg/ha)
Z_r	Measured root zone depth (mm)
Δ	Slope vapour pressure curve (kPa /°C)
$\Delta h/\Delta z$	head gradient (.)
0	Reflectance in the visible red (Band 4 at Landsat 8 and Band 3 at
ρ_R	Landsat 7)
0	Reflectance in the Near-infrared (Band 5 at Landsat 8 and Band 4 at
PNIR	Landsat 7)
γ	Psychometric constant (kPa /°C)

5- SUMMARY AND CONCLUSION

Allocation of Irrigation Water under Conditions of Limited Water Supply Using Precision Agriculture Techniques

Agriculture is the biggest consumer of the freshwater on the earth (70% of global fresh water). Since the fresh available water in the world is limited, the biggest challenge all over the world is how to satisfy the crops water requirements.

Egypt is suffering from limited water conditions in the recent years. there is a gap between supply and demand for water that is estimated 20 BCM/yr. Egypt is predicted to exceed the threshold of absolute water scarcity (500 m³/ca/yr) by 2025 in addition to the concerns of reducing surface water levels due to the fast filling of The Grand Ethiopian Renaissance Dam (GERD). Many challenges in water management procedures are found on Egypt including the un sufficiency of surface water particularly during the periods of maximum demand in the summer. In many parts of the Nile Delta due to the wide cultivated area of rice in addition to the high-water consumption

This study was conducted to assess the impact of allocating irrigation water under limited water conditions, in an effort to support attempts to increase water productivity by relying on improving planning and allocating irrigation water, with integration of precision agriculture techniques. The objectives of the study were planned to be realized through the following steps:

- 1. Studying of factors and tools based on the data and available resources, where it ensures the allocation of a crop, variety, study area and describe the details of the theoretical framework to ensure the optimal representation of the problem of study towards achieving its main goal.
- 2. Preparing and process all the necessary data that can be applied to the crop and study area, with all available strategies as (calculated by reliable models field experiments remote sensing)
- **3.** Conducting a limited field experiment for estimating rice yield response to water stress under different water stress levels and during various growth stages
- **4.** Studying and evaluating of deficit irrigation scenarios over the growth stages of rice for yield production and water use through the field experiment.

5. Developing and implementation a GIS-based model in terms of evaluating irrigation water consumption and water productivity, as an easy-to-use approach to the water balance in the agricultural ecosystem and through the model outputs are applied to the field experiment canal as a case study of water allocation to find real solutions for the agricultural sector under conditions of water scarcity.

All necessary data was prepared and organized through various procedures including Calculation of ETo using FAO Cropwat model, downloading and processing the Remote sensing images for summer season of 2019 from Landsat 7 and 8 and EEFLUX. EEFLUX raster datasets includes: were actual evapotranspiration, reference evapotranspiration, grass reference evapotranspiration fraction, Normalized difference vegetation index, land surface temperature, and Cloud masks. Then, the study was carried out in three main parts:

First part: A limited field experiment was conducted on two consecutive seasons during summer seasons 2018 and 2019 to determine the rice yield response factor to water stress in addition to evaluating the influence of deficit irrigation scenarios. The experiment outline was set up as Randomized Complete-blocks Design under factorial scheme $(3 \times 4 + 1)$: four randomized test blocks for the full growth period (ALL) and the main growth stages of rice: vegetative (VEG.), reproduction (PRO.), and ripening (RIP.) which divided into three different treatment plots representing water stress levels that determined as 90, 75, and 60 % of Readily Available Water (RAW). In addition, the additional treatment plot (CONTROL) representing the full irrigation at 100% of RAW.

The main measurements throughout the seasons carried out before irrigation directly are the effective root zone depth and the soil water content measurements in order to calculate the irrigation water requirements and ensure reaching the required water stress level.

By the end of each season, the total water requirements were calculated and harvesting measurements are conducted as follows: Grain yield weight (gm), Straw yield weight (gm), Water content in grains (%), Water content in straw (%), 1000 grains weight (gm), and Grains filling ratio (%) to estimate yield response factor to water stress and calculate DI indicators like harvest index, water productivity and evapotranspiration water productivity. The data were analyzed by one way analysis of variance (ANOVA) in randomized blocks and means were compared based on the least significant difference (LSD) test at the 5% probability level using Costat 6.311. in addition to, compare means

analysis for multiple comparison of means' tests to compare several means and organize in groups of significance levels.

Second part: A simple ArcGIS toolbox was created for assessment irrigation water allocation using ArcGIS Pro 2.7. The toolbox includes three toolsets, the first toolset is to create the required parameters for calculations, second toolset to produce raster datasets representing the calculations, and the third toolset to complete and editing the parameters raster datasets.

- 1. Parameters Creation Toolset: includes three successive tools. The aim of the toolset is obtaining daily required parameters for the calculations by estimating the parameters from the image includes Crop Water Stress Index (CWSI), Crop Coefficient (Kc), water stress coefficient (Ks), and Actual Evapotranspiration (ETa).
- 2. Water Productivity Estimation Toolset: includes six tools for producing maps for water consumption represented at each growth stage and seasonal actual evapotranspiration, and zones that suffered from water stress during the season. In addition to the impact of water stress that represented at seasonal yield production, irrigation water amounts and water productivity.
- 3. Data Editing and Completing Toolset: The function of the toolset is preparing, editing and completing the raster datasets of the daily parameters. The toolset includes 6 tools for rice crop identification, cloud masking the raster datasets, masking raster datasets by rice fields raster, completing uncompleted rasters that masked and generating daily raster datasets for the parameters.

Third part: A case study was conducted to the study area to reallocate irrigation water based on the experiment results and the GIS based model for irrigation water allocation assessment using Genetic Algorithms.

The most significant results that obtained from the study could be summarized as follows: **Results of first Part:** The limited field experiment for estimate rice yield response to water stress:

1. The average (Ky) to water stress for paddy rice during seasons 2018 and 2019 are: as 1.016, 1.16, 0.65, and 1.04, in addition, regression coefficient (\mathbb{R}^2) values are found as 0.99, 0.98, 0.99, and 0.97 for vegetative, reproduction, ripening growth stages, and full growth period respectively.

2. There is a high correlation between yield production and relative evapotranspiration $(\frac{ET_a}{ET_m})$. Furthermore, the correlation is very high among yield production, 1000 grains weight and grain filling ratio. Moreover, these parameters and relative evapotranspiration have high correlation with harvest index, water productivity, and evapotranspiration productivity.

3. Yield production and harvest index at ripening stage treatments have the less reduction compared to control treatments then, vegetatiave stage, full growth season, and finally reproductive stage treatments. The data analysis shows the high positive effect of water stress levels on yield production and harvest index.

4. Grain filling indicatiors: weight of 1000 grains (gm) and grain filling ration have an agreements with the yield production (ton/ha) in impact of deficit irrigation scenrios thoguout the growth stages. The results indicate that increasing relative evapotranspiration produces increasing in grains filling.

5. The highest average water productivity (WP) obtained from the control treatments with 0.74 Kg/m³, while the lowest average WP was obtained from reproductive stage treatments with 0.51 kg/m³. The average WP recorded from vegetative, ripening stages and full season treatments were: 0.57, 0.61 and 0.65 kg/m³. The average values of evapotranspiration water productivity. (ETWP) throughout the treatments have agreement with average values of WP. The highest average ETWP produced by control stage then ripening growth stage, full season, vegetative, and finally reproductive growth stage treatments with 1.49, 1.22, 1.18, 1.11, and 0.99 kg/m³ respectively.

6. compare mean test indicates the high agreement among the results of 1000 grains weight (gm) and grain filling ratio (%), and yield production (ton/ha), water productivity and evapotranspiration water productivity.

To conclude the previous results, the growth stage that suffered the least impact of water stress is ripening stage, on the other hand, the highest impact occurred during the reproductive stage. The best results obtained from the treatment RIP90: applying 90% water deficit level during the ripening growth stage, in opposite to the treatment PRO 60: applying 60% deficit irrigation level during the reproductive growth stage.

Results of second Part: GIS Based Model for Assessment of Irrigation Water Allocation:

The toolbox was conducted to the study area at summer season of 2019 based on the obtained Ky values from the previous experiment. The important obtained results are as follows:

1. The map of study area classification based on the LANDSAT 8 image in 11 August, shows that, the area of rice fields was 73.3662 km^2 which represented 45% of the total area. However, the area of buildings, bare soil, and other crops were 16.044, 16.460, 57.988 km² represented 10,10,35% of the total area.

2. The average NDVI values for vegetative reproductive, and ripening stages range from (0.18 to 0.85), (0.85 to 0.89), and (0.89 to 0.3). the results indicated that the highest value of NDVI is during the reproductive stage.

3.Values of Kc for vegetative reproductive, and ripening stages range from (0.65 to 1.07), (1.07 to 1.09), and (1.09 to 0.8). Kc value for the reproductive stage is the highest values during the season likewise NDVI. The duration of each growth stage is approximately 73 ,24, and 32 for Vegetative, reproductive, and Ripening. The longest growth stage is vegetative stage.

4. The obtained Kc values are validated compared to the adjusted FAO Kc values to the local climatic condition for the growth stages, vegetative, reproductive, and ripening. The validation of the simple regression equation yielded a coefficient of determination (R^2) = 0.9552 and Root Mean Square Error (RMSE) = 0.08 which indicates to the high accuracy of the estimation.

5. The seasonal summation of ETo for the area ranged between 985.299 to 980.625 mm with average 983.061 mm. The highest ETo summation is approximately 216.722 mm during July, however, the lowest summation is approximately 153.175 mm during September.

6. The highest levels of water stress occurred during the vegetative stage of the rice crop fields, whereas the highest average of CWSI is 0.39 and 16.15% of the area suffered from CWSI values higher than 0.5 when the lowest average of Ks throughout the season is 0.74 with the largest area proportion which suffered from Ks values lower than 0.7. Otherwise, the lowest level of water stress occurs during the reproductive stage, because of the value of average CWSI is 0.27 and only 4.47% of the area recorded CWSI values higher than 0.5, on the other hand, the lowest level of water stress occurs during the stress oc

the reproductive stage, since the value of average is 0.91 and only 0.1 % of the area recorded Ks values lower than 0.7.

7. The agreement between CWSI and Ks for evaluating water stress throughout individual growth stages. On the other hand, CWSI is not an accurate index for water stress throughout the season because it is based on land surface temperature which affected by the growth stage of the plant.

8. The highest value of average daily actual evapotranspiration values (ETa, mm) throughout the season is 6.74 mm at the 72^{nd} day, however the lowest value is 2.12 mm at the 7th day. Although, the lowest average values of ETo occurred during the vegetative growth stage, this stage contributed the largest proportion of the seasonal ETa summation due to the long duration of this stage compared to other stages and the opposite is true for the reproductive stage.

9. The spatial distribution of yield production(ton/ha) indicates that, fields which produced the largest grain yield (8 to 10.7 ton/ha) represented 3% of the total rice fields area. The estimated total yield production of the study area for 2019 season is 27588 ton.

10. The spatial distribution of the consumed irrigation water amounts indicated that, fields which consumed more than $1.1 \text{ m}^3\text{m}^2$ represented 18% of the total area. The total estimated water consumption for the study area was 50,658,900 m³.

11. The spatial distribution of water productivity (WP) and evapotranspiration water productivity (ETWP) in (kg/m^3) indicates that, the highest values of WP and ETWP are 0.9 and 1.81 kg/m³.

12. The outputs of the ArcToolbox were validated by the corresponding output from the limited experiment to estimate rice yield response to water stress. the output values of model-based WP and ETWP for ripening stage were used for the validation compared to the similar experiment- based values. The root means square error (RMSE)= 0.0178 and 0.0547 for WP and ETWP respectively, which indicates to the high accuracy. The statistical analysis illustrated the convergence between the model-based and experiment-based outputs, which proved the accuracy of the toolbox for estimating water consumption, water stress level, yield production, water productivity, and evapotranspiration water productivity.

Results of third part: Spatial irrigation water allocation using genetic algorithms:

- The new distribution of growth stages which could be concluded as follows: 7.95%, 6.55%, and 85.49% for the vegetative, ripening growth stages and full season water stress. reproductive growth stage didn't distribute due to the high sensitivity to water stress.
- 2. The total proposed irrigation water was 4.99×10^7 m³. The spatial irrigation water distribution (m³\m²) varied from 0.92 to 1.35 m³\m².
- 3. The new predicted spatial yield production varied from 0.514 to 0.785 kg/m². The total new potential yield production is 28383 ton, which higher than the real production by 11.88% (3014 ton).

The recommendations

- It is recommended to use the rice yield response factors to water stress for various growth stages for accurate estimation of actual yield production.
- The most tolerant growth stage of rice which is recommended to apply water stress is ripening stage, on the other hand, the highest impact of water stress occurs during the reproductive stage.
- Applying 90% of readily available water during the ripening growth stage is recommended under water stress conditions while, applying 60% deficit of RAW during the reproductive growth stage causes a reduction in yield production.
- It is recommended to use the (ArcGIS Toolbox for irrigation water allocation assessment) to estimate water stress, yield production and water productivity accurately, using daily data throughout the season.
- Using genetic algorithms is recommended to reallocate irrigation water based on deficit irrigation methods, which predicted 11.88% production higher than the actual production under the same amount of available water.