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Abstract 

Agricultural practices (i.e. fertilizers or pesticides) are anthropogenic 

sources of organic pollutants through the contamination of the local-point or 

diffused sources. Although, the necessity of these organic species in the food 

production, the inconsiderate use of these organic species caused harmful 

impacts for environment and human. Thus, developing of alternative 

agrochemicals has attracted much attention to overcome these agricultural and 

environmental challenges.  Many researchers and agrochemical companies 

devote their interest to provide efficient and sustainable strategies for controlling 

insect pests. Application of nano-sized particles in the agriculture sector might 

provide an environmentally sustainable solution for the shortage of annually 

food production. Numerous nano-agrochemical substances were developed. 

However, the efficacy, safety and applicability of these nano-agrochemicals 

onsite is still challenge.  

In this context, we synthesized SiO2, CuO and CaO nanostructures for 

cotton leafworm (Spodoptera littoralis) control. Interestingly, the CuO showed a 

faster entomotoxic effect than CaO. However, CaO showed lower median lethal 

concentration (LC50). Thus, calcium-based nanopesticides will be developed in 

the current thesis. Thank to calcium as an essential nutrient elements for plants, 

thus it could enhance the soil fertility. Firstly, calcium borate particles with 

different shapes including monolithic micro-blocks (M), sea urchin microspheres  

(SU) and mushroom (MU) -like were synthesized by facile hydrothermal routes. 

Amorphous phases of calcium borates of CBM-A, CBSU-A, and CBMU-A were 

obtained by thermal treatment at 500 
o
C, while the crystalline phases of CBM-C, 

CBSU-C, and CBMU-C were produced after the calcination at 800 
o
C. The 

crystalline phase of CBM-C, CBSU-C, and CBMU-C exhibited typical 
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diffraction peaks of orthorhombic calcium meta-borate (CaB2O4) with a crystal 

size of 42.54 nm, 35.66 nm, and 37.28 nm, respectively.  

The insecticidal activity of calcium borate samples was explored against 

Spodoptera littoralis. Feeding bioassay method was utilized for evaluating 

larvicidal efficacy after eleven days post-treatment, biological aspects, oxidative 

stress, and histopathological effects. The larvicidal efficacy based on LC50 

values for CBM-A, CBSU-A, and CBMU-A were found to be 406.92, 207.05 

and 188.63 mg/L, respectively. While, CBM-C, CBSU-C, and CBMU-C showed 

LC50s of 532.31, 303.61 and 276.38 mg/L, respectively, which is higher than that 

of the amorphous samples. These results indicated that the particle size and 

crystallinity of calcium borate samples are the significant key factors for 

Spodoptera littoralis control which mainly regarding to the availability of borate 

ions. The investigation of the biological aspects of calcium borate materials in 

terms of weight, pupation and adult emergency revealed that their lethal 

concentrations have significant effects on pupa and adult stages similar to insect 

growth regulator insecticides (i.e. dimilin). Thus, the influence of calcium borate 

samples on histopathological changes of mid-gut and cuticle cross-sections will 

be carefully studied. Interestingly, the calcium borate samples did not 

significantly effect on mid-gut section but cause partial destroy of cuticle layer 

leading to losing the protective exoskeleton and insects quickly begin to lose 

water and eventually die via desiccation.  

Next attention was turned to utilizing calcium-rich waste (i.e. chicken 

eggshells) for preparing new insecticides at low cost with great environmental 

impacts. Thus, large scale of calcium silicate material was synthesized via 

template-free sol-gel method. Highly dense aggregated sheets with varied sizes 

less than 5.0 μm of amorphous calcium silicate  (ECS) were obtained. The 

larvicidal efficacy of ECS was investigated by feeding bioassay method against 
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Spodoptera littoralis. The ECS exhibited lower larvicidal activity (LC50 = 517 

mg/L) compared with calcium borates. Although, the lower insecticidal activity 

of ECS, it contains the most important soil nutrients (Ca and Si elements) as 

well as derived from environmental waste.  

On the other hand, mitigation the usage of organic pesticides via 

combination with the nanostructured materials will be interesting trend. The 

synergistic combinations of CBSU-A, and ECS with cholinesterase-inhibiting 

insecticides such as methomyl and chlorpyrifos were explored. The combination 

of CBSU-A with methomyl and chlorpyrifos increased the toxicity to 2.4 and 

2.6-folds. While, the combination of ECS raised the toxicity for methomyl and 

chlorpyrifos by 2.7 and 2.8-fold, respectively. The CBSU-A, and ECS could 

rupture the cuticle layer and then allows the organic insecticides to penetrate 

inside the insect body. Such miscellaneous mode of action increases the 

insecticidal efficacy against Spodoptera littoralis, which sequentially reduces 

the intensive usage of highly toxic nervous system insecticides. In conclusion, 

the synthesized calcium borates and calcium silicate nanostructures can be 

employed as a multifunctional nanoagrochemical to boost various agricultural 

programs in terms of soil fertility and plant growth.   

 

 

 

 

 

 

  

 


