

Integrity check of Foot and mouth disease virus for production of potent trivalent vaccine

A Thesis Submitted by

Mohammed Ramadan Nour EL-Deen Ali

B.V.Sc Assuit University, Year (2012)M. Vet. Sci Benha University, Year (2018)

To Faculty of Veterinary Medicine, Benha University For obtaining PhD Degree in Veterinary Medicine (Virology)

Under supervision of

Prof. Dr. Gabr Fikery El-Bagoury

Professor of Virology, Faculty of veterinary Medicine, Benha University

Prof. Dr. Hiam Mohamed Fakhry

Chief of researches, and Head of FMD Research Department, Veterinary Serum and Vaccines Research Institute, Abasia, Cairo

LIST OF CONTENTS

Content	Page
DECLARATION	I
ACKNOWLEDGMENT	II-III
LIST OF CONTENTS	IV-VI
LIST OF ABBREVIATIONS	VII
LIST OF FIGURES	VIII-IX
LIST OF TABLES	X
ABSTRACT	XI-XII
Chapter 1: General Introduction and aim of the work	1-13
1.1. History and distribution of FMDV	1
1.1.1 History background	1
1.1.2. Global distribution	2
1.1.3. Frequency of FMD in Egypt	3
1.2. FMDV classification	3
1.3. Physicochemical properties of FMDV	4
1.3.1. Virus morphology	4
1.3.2. Molecular structure and antigenic components of FMDV	4
1.3.3. FMDV capsid assembly and dissociation	6
1.4. Susceptibility to physical and chemical agents	7
1.4.1. Effect of Heat	7
1.4.2. Effect of pH and relative humidity (RH)	8
1.4.3. Effect of Chemicals	8
1.5. Biological properties of FMDV	8
1.5.1. Virus replication	8
1.6. Laboratory diagnosis of FMDV	9
1.6.1. Virus isolation	9
1.6.1.1. In laboratory animals	9
1.6.1.2. In tissue culture	9
1.6.2. Serological tests	10
1.6.2.1. Virus Neutralization Test (VNT)	10
1.6.3. Molecular characterization of FMDV	10
1.6.3.1. Polymerase chain reaction	10
1.6.3.2. Sequencing	11
1.7. Epidemiology of FMDV	11
1.7.1 Susceptible hosts	11
1.7.2. Transmission of FMDV	12
1.9. FMDV vaccination	12
1.10. Aim of the work	13

Content		Page
Cł	hapter 2: 1 st publication	14-25
Ge		
Di	sease Virus Vaccine Strains and Recent Field Isolate.	14
	Highlights	14
	Abstract	14
	1. Introduction	14
	2. Materials and Methods	16
	2.1. Samples collection	16
	2.2. FMD vaccine strains	16
	2.3. Baby hamster kidney cell line (BHK-21)	16
	2.4. Virus isolation and titration	16
	2.5. Viral RNA extraction	17
	2.6. Identification of FMDV nucleic acid using Reverse Transcriptase	17
	Polymerase Chain Reaction (R1-PCR)	10
	2.7. Sequence and molecular characterization	18
	3. Results	18
	3.1. Virus isolation and litration	18
	3.2. FMDV serotyping using conventional RT-PCR	18
	3.3. Sequence and molecular characterization	18
	3.4. Phylogenetic analysis	18
	4. Discussion	22
Chapter 3: 2 nd publication		26-34
IS of (olation and Genetic Characterization of FMDV causing an outbreak	
aiv	Abstract	26
	1 Introduction	26
	2 Materials and Methods	28
	2.1 Samples collection	28
	2.1. Sumples concerton 2.2 Processing of the collected samples	28
	2.3 Baby hamster kidney cell line (BHK-21)	20
	2.4. Virus isolation and titration	29
	2.5. Archived FMD viruses	29
	2.5. Alchived FMD viruses	29
	2.0. Vital KIVA extraction 2.7 Identification and serotyping of EMDV nucleic acid using	29
	conventional RT_ PCR	2)
	2.8 Sequencing	30
	2.0. Dhylogenetic Analysis	30
	2.7. Thylogenetic Analysis 3 Results	30
	3.1 Virus isolation and Titration	30
	2.2 FMD virus seretuping using conventional DT DCD	30
	2.2. FIVID VITUS SETOLYPING USING CONVENTIONAL KI-PCK	22
	3.3. sequencing	32
	5.4. Phylogenetic analysis	32
	4. Discussion	55

Content		Page
Chapter 4: 3 ^r	^a un published paper	35-46
Integrity chec	k of Foot and Mouth Disease Virus for production of	
potent trivale	nt vaccine	
Abstract		35
1. Intro	duction	35
2. Mate	erials and Methods	37
2.1. Viru	s propagation and titration	37
2.2. Viru	s inactivation	37
2.3. Viru	s concentration	37
2.4. Estin	nation of the antigenic content (146S) in the inactivated	38
FMDV by a	using sucrose density gradient ultracentrifugation (SDG)	
2.5. Effe	ct of pH on stability of the inactivated FMDV	38
2.6. Then	mal stability of the inactivated FMDV	38
2.7. The	mal stability of the inactivated FMDV at 45 °C with addition	39
of different	concentrations of sucrose or glycerol as stabilizers	
2.8. Form	nulation of FMD vaccine with Montanide ISA-206	39
2.9. Anir	nals' groups	39
2.10. Eval	uation of the immune response of vaccinated calves' groups	39
using Serur	n neutralization test (SNT)	
3. Resu	ılts	39
3.1. Effe	ct of pH on stability of the inactivated FMDV	39
3.2. There	nal stability of the inactivated FMDV	40
3.3. There	nal stability of the inactivated FMDV at 45 °C with addition	40
of different	concentrations of sucrose or glycerol as stabilizer	
3.4. Evalu	ation of the immune response of vaccinated animals' groups	41
using serun	n neutralization test (SNT)	
4. Discu	ission	45
Chapter (5) : (General Discussion and conclusions	47-52
Chapter (6) :	Summary	53-58
	English Summary	53-55
	Arabic Summary	56-58
References	Reference list	59-73
Appendix		74-81
	Appendix I : Curriculum Vitae	74
	Appendix II : Buffers and reagents	75-79
	Appendix III : Publication	80-81

list of abbreviations

AGID	Agar gel immuno diffusion test
AHRI	Animal health research institute
Alx	Alexandria
BEI	Binary bthyleneimine
BHK	Baby hamster kidney
CFT	Complement fixation test
CLEVB	Central Laboratory for Evaluation of Veterinary Biologics
СРЕ	Cytopathic effect
DDW	Doubled distilled water
EA-3	East Africa-3
ELISA	Enzyme linked immuno sorbent assay
ЕТН	Ethiopia
FMD	Foot and Mouth Disease
FMDV	Foot and Mouth Disease Virus
IRES	Internal ribosome entry site
Isam	Ismailia
Lib	Libya
MEM	Minimum essential medium
ME-SA	Middle east-south asia
ME-VAC	Middle East for Veterinary vaccines
MHC	Major histocompatibility complex
NSPs	Nonstructural proteins
OIE	Office International des Epizooties
ORF	Open reading frame.
PBS	Phosphate buffer saline
PH	Potential of hydrogen
PKs	Pseudo knot structures
РТ	Protective titer
RH	Relative humidity
RNA	Ribonucleic acid
RT-PCR	Reverse transcriptase polymerase chain reaction
SAT	Southern african territories
SDG	sucrose density gradient
SUD	Sudan
ТАЕ	Tris acetate EDTA (ethylenediamine tetra-acetic acid)
TBS	Tris-buffer saline
TCID	Tissue culture infective dose
TE	Tongue epithelim
UTR	Untranslated region
VF	Vesicular fluid
VNT	Virus neutralisation test
VP1	Viral protein 1
VSVRI	Veterinary Serum and Vaccine Research Institute
WPV	Weeks post vaccination
WRLFMD	World reference laboratory for foot and mouth disease

List of figures

Figure No.	Figure Title	Page NO
Figure	Distribution of the seven endemic pools of foot and mouth disease virus	2
1.1	showing the predominant viral serotypes that are present in each region,	
	as well as the conjectured status of foot and mouth disease in different	
	countries.	
Figure 1.2	Phylogenetic tree of the Picornaviridae family	4
Figure 1.3	Structure of FMDV genome and proteolytic processing of viral polyprotein	6
Figure 1.4	A schematic representation of FMDV capsid dissociation.	7
Figure 1.5	Diagram overviewing FMDV replication cycle in host cell	9
Figure	Phylogenetic tree based on VP1 gene using the neighbor-joining	19
2.1	method for the isolated FMDV, vaccine strain serotype A (tagged by	
	circular), and another 24 sequences of FMDV serotype A downloaded	
	from the GenBank database.	
Figure	Phylogenetic tree based on VP1 gene using the neighbor-joining method	20
2.2	for FMDV vaccine strain serotype O (tagged by circular) and another 37	
	sequences of FMDV serotype O downloaded from the GenBank database.	
Figure	Phylogenetic tree based on VP1 gene using the neighbor-joining method	21
2.3	for FMDV vaccine strains serotype SAT-2 (tagged by circular) and	
	additional 29 sequences of FMDV serotype SAT-2 downloaded from the	
	GenBank database.	
Figure	Deduced amino acid sequence alignment of 1D of the new FMDV	21
2.4	field isolate compared with reference vaccine strains.	
Figure	Normal confluent spindle uninfected BHK-21 (panel A). Inoculated	31
3.1	BHK-21 showing the characteristic CPE for FMDV exhibited rounding,	
	granulation, and cell detachment (panel B).	
Figure	The PCR products reveal the presence of 402 bp bands in the gel	31
3.2	(serotype O).	

Figure	Figure Title	Page
No.		NO
Figure	the phylogenetic tree based on 1 D sequence using the neighbor-joining	32
3.3	method illustrated that the field isolated virus belongs to serotype O, East	
	Africa 3 (EA-3) topotype, lineage ALX-17, and the archived viruses	
	belong to serotype O, Middle East-South Asia topotype (ME-SA), lineage	
	Sharquia-72 (tagged by circular) and the vaccine strain related to PanAsia	
	-2 lineage, Middle East-South Asia topotype (ME-SA) (tagged by	
	square).	
Figure 4.1	Effect of pH on stability of 146S	40
Figure 4.2	Thermal stability of 146S at different temperature	40
Figure	Thermal stability of 146S at 45°C with addition of different concentrations	41
4.3	of sucrose or glycerol as stabilizer	
Figure	Serum neutralizing antibodies titer for serotype O (Pan-Asia-2) in calves	42
4.4	vaccinated with trivalent inactivated FMD vaccine	
Figure	Serum neutralizing antibodies titer for serotype A (Iran 05) in calves	43
4.5	vaccinated with trivalent inactivated FMD vaccine	
Figure	Serum neutralizing antibodies titer for serotype SAT-2 (Ghb-12) in calves	44
4.6	vaccinated with trivalent inactivated FMD vaccine	

List of tables

Table No.	Table Title	Page NO
Table 2.1	Data from collected samples.	16
Table 2.2	Oligonucleotide FMDV-specific primers used for typing by RT-PCR Technique	17
Table 2.3	Amino acid variations in the major antigenic site of 1D between the recently circulating FMDV isolate and reference vaccine strains in Egypt.	22
Table 3.1	Data of collected samples	28
Table 3.2	Oligonucleotide FMDV-specific primers used for typing by RT-PCR Technique	30
Table 4.1	Serum neutralizing antibodies titer in calves vaccinated with inactivated trivalent FMD vaccine with dose (6 µg 146S/strain/dose).	42
Table 4.2	Serum neutralizing antibodies titer in calves vaccinated with inactivated trivalent FMD vaccine with dose (4 µg 146S/strain/dose).	43
Table 4.3	Serum neutralizing antibodies titer in calves vaccinated with inactivated trivalent FMD vaccine with dose (2 µg 146S/strain/dose).	44

Abstract: المستخلص

Title: Integrity check of Foot and mouth disease virus for production of potent trivalent vaccine

Student Name: Mohammed Ramadan Nour EL-Deen Ali.

Nationality: Egyptian

Degree: PHD degree of veterinary medical science

Specialization: Virology

Department: Virology Department, Faculty of Vet. Med. Benha University

Supervisors:

Prof. Dr. Gabr Fikery El-Bagoury

Professor of Virology, Faculty of veterinary Medicine, Benha

University

Prof. Dr. Hiam Mohamed Fakhry

Chief of researches, and Head of FMD Research Department,

Veterinary Serum and Vaccines Research Institute, Abasia,

Cairo

Abstract

The efficacy of an inactivated Foot and mouth disease (FMD) vaccine is mainly dependent on the integrity of the Foot and Mouth disease virus (FMDV) particles (146S) and the vaccine strains should match those strains circulating in the field, an updated vaccine is required to control the disease. Tongue epithelium and vesicular fluid samples were collected from cattle and buffalo farms with FMD outbreak from Port Said Government in 2020 (n=20) and Qalyabia Government in 2021 (n= 30), while the animals in Port Said were vaccinated with the local polyvalent inactivated vaccine (O pan-Asia-2, A Iran 05, SAT-2/ Ghb/2012, and SAT-2/Lib/2018). Trail of Virus isolation was carried out on BHK-21 cell line followed by conventional RT-PCR and sequencing for typing and phylogenetic analysis of the isolated viruses and the vaccine strains. the effects of different pH and temperature on the dissociation of 146S was investigated using SDG, sucrose and glycerol with different concentrations were used as stabilizers to delay the dissociation of the antigenic 146S to less antigenic 12S, and evaluating the immune response using Serum neutralization test for different contents of 146S in the prepared trivalent vaccine. Partial sequencing and phylogenetic analysis of VP1 for the field isolated virus from Port Said government revealed that it was serotype A of the Africa topotype, Genotype IV with a nucleotide difference of 26.34% from the locally used vaccine strain serotype A of the Asia topotype, lineage Iran-05 with genetic variation in the major antigenic sites of the VP1 region, while the isolated virus from Qalyabia Government in 2021 related to serotype O topotype EA-3 lineage Alx-17 with 15.28% nucleotide difference from the locally used vaccine strain serotype O, topotype ME-SA, lineage Pan-Asia-2. Our results showed that the most stable pH for the antigenic 146S was noticed to be between 7.5 and 8, by adding 20% of sucrose or glycerol as stabilizer the half-life of 146S at 45 °C could be increased from 30 minutes to more than 3 days. We concluded that minimum content of the antigenic 146S of FMDV strains (O pan-Asia-2, A Iran 05 and SAT- $2|Ghb-12\rangle$ should not be less than $4\mu g/strain/dose$ for production of potent trivalent vaccine. We recommended adding serotype A of the Africa topotype, Genotype IV to the subsequent prepared vaccine batches, more cross-matching studies (R-value and challenge) between EA-3 viruses and Pan-Asia-2 vaccine strain, and searching for more stable FMD vaccines to sustain the unsuitable harsh condition during transportation, storage, and vaccines campaigns.

Keywords: FMDV; A-Africa; O/EA-3/Alx-17; 146S; SDG; stabilizers; SNT.