BIOLOGICAL INTERACTIONS BETWEEN PATHOGENS AND LEAFHOPPERS INFESTING SUGAR BEET PLANTS IN EGYPT

By

HEBA ESSAM IBRAHIM ABD-EL-AZIZ

B. Sc. Agric. Sc. (Entomology), Fac. of Agriculture, Ain Shamus Univ. (2007) M. Sc. Agric. Sc. (Entomology), Fac. of Agriculture, Ain Shamus Univ. (2016)

> A Thesis Submitted in Partial Fulfillment Of The Requirements for the Degree of

DOCTOR OF PHILOSOPHY in

Agricultural Sciences (Economic Entomology)

Department of Plant Protection Faculty of Agriculture Ain Shams University

2022

ABSTRACT

Heba Essam Ibrahim Abd-El-Aziz: Biological Interactions Between Pathogens and Leafhoppers Infesting Sugar Beet Plants in Egypt.

Unpublished Ph.D. Thesis, Department of Plant Protection, Faculty of Agriculture, Ain Shams University, 2022.

Sugar beet (*Beta vulgaris*) L. is considered the second sugar crop for sugar production especially in Egypt. This plant is subjected to infestation of several insect pests causing considerable damage specially Leafhoppers that can transmit phytopathogens like virus and Phytoplasma. The present work aimed to survey and identify different leafhopper species infesting sugar beet plant also detection and molecular identification of Pathogens associated with sugar beet that transmitted by leafhopper in Egypt.

Nine leafhopper species belonging to two subfamilies and five genera were found on sugar beet plants at different governorates in Egypt throughout 2017 to 2020. The surveyed species were *Hebata* (Alboneurasca) decipiens, Hebata (Signatasca) distinguenda, Jacobiasca lybica, Eupteryx cypria, Balclutha frontalis, Balclutha incisa, Aconurella prolixa, Exitianus pondus and Psammotettix striatus.

Taxonomical revision and Morphological diagnostic characters of some leafhoppers infesting sugar beet plant in Egypt were described for each collected species.

Population fluctuations of the most common species of leafhoppers, i.e. *H. decipiens* was conducted on sugar beet plant at Giza Governorate and the results revealed that *H. decipiens* had two peaks of activity during season 2020 on sugar beet plants. The first one was occurred at the 4th week of April. The second peak was occurred at the 1st week of June. At Qalyubyia Governorate *H. decipiens* recorded also two peaks of activity during season 2018/ 2019 at Kaha region. The first one occurred at the 3rd week of January while, the second peak was occurred at the 1st week of February. Again during season 2019/ 2020 *H. decipiens* recorded two peaks of activity the first one was occurred at the 2nd week of January. The second peak was occurred at 1st week of February.

Survey of phytopathogens in both leafhoppers and sugar beet plant was conducted at different sugar beet fields in five Governorate (Giza, Qalyubyia, Sharqia, Fayoum and Kafr El-sheikh) throughout the period from 2017 until 2020 in Egypt.

The detection Relationship between the *Hebata (Alboneurasca) decipiens* and both virus and phytoplasma was studied. The results showed that the presence of Geminivirus (Tomato Yellow leaf curl virus (TYLCV)) in both *H. decipiens* and sugar beet plant but did not transmitted by *H. decipiens*.

Phytoplasma disease was detected and isolated by nested PCR from naturally infected sugar beet plants during survey in different Governorates. Results proved that Phytoplasma was transmitted successfully from naturally infected to healthy sugar beet plants by *H. decipiens*. The phytoplasma was detected by 16SrRNA gene amplified by nested-PCR assay and direct sequenced using specific primer pairs. Phylogenetic tree was done based on obtained sequences data. Results were confirmed the presence of phytoplasma in sugar beet plant for the first time in Egypt. The isolate was submitted to the gene bank under accession number of OP032749.

The efficacy of Sivanto prime insecticide was studied in molting of leafhopper *Hebata decipiens* nymphs. According to the low concentrations of LC_{50} (0.369) and the LC_{90} (2.005) values after 72 hours, sivanto prime insecticide proved to be very potent on the nymphs of leafhopper.

Keywords: leafhoppers, Cicadellidae, Hemiptera, Auchenorrhyncha Geminivirus, phytoplasma and Sugar beet

CONTENTS

	Page
LIST OF TABLES	V
LIST OF FIGURES	IX
INTRODUCTION	1
REVIEW OF LITRATURE	4
1. Survey of leafhopper species infesting sugar beet plants in	
Egypt	4
2. Taxonomical revision of some leafhoppers infesting sugar	
beet plant in Egypt	5
3. Population fluctuations of leafhoppers on sugar beet	
plant	8
4. Symptoms of injury	14
5. Transmission of phytopathogens by leafhoppers	15
6. Polymerase Chain Reaction (PCR) for detection of plant	
pathogens	17
7. Sivanto insecticide (common name: flupyradifurone)	18
MATERIAL AND METHODS	20
1.Survey of leafhopper species infesting sugar beet plants in	
Egypt	20
1.1. Collecting samples	20
1.1.1. Sweeping net	20
1.1.2. Aspirator	21
1.1.3. Plant samples	21
2.Taxonomical revision of some leafhoppers infesting sugar	
beet plant in Egypt	21
2.1. Preserving samples	21
2.2. Preparing of mounted microscopic slides	21
3.Population fluctuations of the most common species of	
leafhoppers <i>H. decipiens</i> on sugar beet plant	23
4. Relationship study between the leafhopper and plant	
pathogen	24

4.1. Survey of phytopathogens that transmit by leafhoppers4.2. Sources of naturally infected sugar beet plants with	24
Pathogen	24
4.2.1. Sources of naturally infected sugar beet plants with	
Geminivirus	24
4.2.2. Sources of naturally infected sugar beet plants with	
Phytoplasma	25
	23
4.3. Rearing of leafhopper (maintaining of virus free colony.	26
4.3.1. Isolating and transmission cage	27
4.3.2. Leafhoppers rearing cages	27
4.4. Maintaining a leafhoppers free virus colony	28
4.5. Steps of insect transferring using isolation or separation cage	29
4.5.1.Varieties used	29
4.6.Transmission of phytopathogens by leafhopper H.	
decipiens to sugar beet plants	31
4.6.1. The ability of <i>H. decipiens</i> to transmit TYLCV to	
healthy sugarbeet plants	31
4.6.2. The ability of <i>H. decipiens</i> to transmit phytoplasma to	
healthy sugarbeet plants	31
5.Detection and identification of some pathogenic isolstes that	
transmit by leafhopper	32
5.1.Detection of Geminivirus in sugar beet Seed plantations	32
5.1.1.Virus detection	33
5.1.2.Dellaporta buffer	34
5.1.3.Polymerase Chain Reaction (PCR) conditions for	54
detection of BCTV	34
5.1.4.Polymerase Chain Reaction (PCR) conditions for	54
	25
detection of Tomato Yellow leaf Curl Virus TYLCV	35
5.1.5.Gel preparation procedure	36

5.2. Phytoplasma detection	36
5.2.1. Detection of phytoplasma using nested PCR	36
5.2.1.1. DNA Extraction	36
5.2.1.2. Nested Polymerase Chain Reaction (PCR)	36
5.2.1.3.PCR Sequencing and analysis	37
6. Bioassay	38
6.1. Insecticide used	38
6.1.1.Butenolid group	38
6.2. Determination of the LC_{50} and LC_{90} values for	
Sivanto prime Insecticides	38
6.2.1. Procedures	38
RESULTS AND DISCUSSION	40
1.Surveying of leafhopper species infesting sugar beet plant in Egypt	40
2. Taxonomical revision of some leafhoppers infesting sugar beet plant in Egypt	41
2.1.Subfamily: Typhlocybinae	41
2.1.1.Tribe: Empoascini	41
2.1.1.1.Genus Hebata	41
2.1.1.1.1.Hebata (Alboneurasca) decipiens	43
2.1.1.1.2.Hebata (Signatasca) distinguenda	43
2.1.1.1.3 Jacobiasca lybica	44
2.1.2.Tribe: Typhlocybini	46
2.1.2.1.Genus <i>Eupteryx</i>	46
2.1.2.1.1 Eupteryx cypria	46
2.2.Subfamily Deltocephalinae	47
2.2.1.Tribe Macrostelini Kirkaldy	47
2.2.1.1. Genus Balclutha Kirkaldy	47
2.2.1.1.1 Balclutha frontalis	48

2.2.1.1.2. Balclutha incisa	49
2.2.2.Tribe Chiasmini	50
2.2.2.1.Genus Aconurella Rib	50
2.2.2.1.1.Aconurella prolixa	50
2.2.2.Genus <i>Exitianus</i> Ball	52
2.2.2.1. Exitianus pondus	52
2.2.3.Tribe Paralimnini Distant	54
2.2.3.1.Genus <i>Psammotettix</i>	54
2.2.3.1.1. Psammotettix striatus	54
3. Population fluctuations of the most common species of	
leafhopper <i>H. decipiens</i> on sugar beet plant	60
3.1. Population fluctuations of leafhopper H. decipiens on	
sugar beet plant at Giza Governorate	60
3.2. Population fluctuations of <i>H. decipiens</i> on sugar beet	
plant season 2018/2019 at Kaha region Qalyubyia Governorate	63
3.3. Population fluctuations of <i>H. decipiens</i> on sugar beet	05
plant season 2019/2020 at Kaha region Qalyubyia	
Governorate	67
4.Relationship study between the leafhopper and plant	07
pathogen	71
4.1. Survey of phytopathogens that transmit by leafhoppers	71
4.1.1. Survey of positive samples for Geminivirus	71
4.1.1.1. Detection of Geminivirus in leafhopper samples	71
4.1.1.2. Detection of Geminivirus in sugar beet leaves sample	72
4.1.2. Survey of positive samples for phytoplasma	73
4.1.2.1.Detection of phytoplasma in leafhopper samples	73
4.1.2.1.Detection of phytoplasma in sugar beet leaves sample	73
4.2. Transmission of phytopathogens by leafhopper <i>H</i> .	
decipiens to sugar beet plants	75
4.2.1. The ability of <i>H. decipiens</i> to transmit TYLCV to	
healthy sugar beet plants	75

4.2.2. The ability of <i>H. decipiens</i> to transmit phytoplasma to	
healthy sugar beet plants	75
5.Detection and identification of some pathogenic strains that	
transmit by leafhopper	76
5.1.Detection of Geminivirus	76
5.1.1.Detection of Geminivirus in sugar beet seed	
plantation	76
5.1.2. PCR cleanup, sequencing and analysis	76
5.2. detection of phytoplasma	80
5.2.1.Detection of phytoplasma using nested PCR	80
5.2.2. PCR cleanup, sequencing and analysis6. The efficacy of Sivanto prime insecticide in <i>Hebata</i> (<i>Alboneurasca</i>) <i>decipiens</i> molting	81 84
6.1. Determination of the he LC_{50} and LC_{90} values for	
Sivanto prime insecticides	85
CONCLUSION	87
SUMMARY	88
REFERENCES	94
ARABIC SUMMARY	