

TECHNOLOGICAL AND CHEMICAL STUDIES ON IMPROVING SOME BAKERY PRODUCTS BY USING NATURAL SOURCES

By

Mohamed Salah Ibrahim Ibrahim Saleh

B.Sc. Agric. Sci. (Food Science), Fac. of Agric., Al-Azhar University (1996) M.SC. Agric. Sci. (Food Science), Fac. of Agric., Al-Azhar University (2009)

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy In Agriculture Science (Food Technology)

From

Food Technology Department Faculty of Agriculture Benha University

2022

Technological and Chemical Studies on Improving Some Bakery Products by Using Natural Sources ABSTRACT

Chemical, bio-chemical and minerals composition of pomegranate seed pomace (PSP) and the date press powders (DPP) were studied. The results indicated that PSP and DPP is a good source for total dietary fiber, minerals, total phenols, total flavonoids and antioxidant activity. The effect of replacement of wheat flour (72% ext.) with 20, 25 and 30% PSP or DPP on physico-chemical and organoleptic properties of sweet biscuit and salted biscuit were studied. The obtained data show that by increasing the percent of replacement with the previous two sources in the produced biscuits lead to increase of ether extract, ash, crude fiber and mineral contents, while crude protein, available carbohydrates and energy were gradually decreased compared with the control sample. Also, the moisture content and water activity values were increased significantly by increasing the replacement percent with PSP or DPP. During storage period the pH value of biscuit samples was significantly decreased by increasing the replacement percent with PSP or DPP. Also, results revealed that the pH value of all biscuits samples increased with the increase of storage period up to 6 months. At the same time, both of acid value and peroxide value of biscuit samples significantly increased with increasing of storage period up to 6 months. Finally, it could be noted that, sweet and salted biscuits produced by partially replacement of wheat flour with PSP or DPP until level 30% had characterized with a good sensory properties and acceptability. It could be recommended that incorporation of the mentioned raw materials as a food by product to obtain healthy food products (especially bakery products) have a high biological value.

KEYWORDS: Pomegranate seed pomace, date press pomace, biscuits, chemical and physical properties, storage effect.

CONTENTS

	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	7
2.1. Functional foods	7
2.1.1. Definition of functional foods	8
2.1.2. Health benefits and status of functional foods	9
2.1.2.1. Dietary fiber	11
2.1.2.2. Phenolic compounds	13
2.1.2.3. pH value	15
2.1.2.4. Acid value (AV)	15
2.1.2.5. Free fatty acids (FFA)	16
2.1.2.6. Peroxide value (PV)	16
2.1.3. Water activity	18
2.2. Nutritional value of some raw materials	19
2.2.1. Nutritional value of wheat flour (72% extraction)	19
2.2.1.1. Chemical composition of wheat flour 72%	
extraction	19
2.2.1.2. Minerals content of Wheat flour (72%	
extraction)	21
2.2.2. Nutritional value of pomegranate seeds powder	23
2.2.2.1. Chemical composition of pomegranate seeds	
powder	23
2.2.2.2. Minerals content of pomegranate seeds powder	25
2.2.3. Nutritional value of date press powder (DPP)	25
2.2.3.1. Chemical composition of date press powder	26
2.2.3.2. Minerals content of date press powder	27
2.3. Healthy benefit of some raw materials	28

	Page
2.3.1. Healthy benefit of pomegranate seeds powder	28
2.3.2. Healthy benefit of date press powder DPP	28
2.4. Utilization of some raw materials in the	
development of some foods	29
2.4.1. Application benefits from raw material in some	
foods	30
2.4.2. Application benefits from pomegranate seeds	
powder (PSP) in bakery products	31
2.4.3. Application benefits from date press powder	
(DPP) In bakery products	32
2.5. Chemical composition of biscuit	33
2.6. Texture	34
2.7. Hardness	36
2.8. Sensory evaluation	37
3. MATERIALS AND METHODS	41
3.1. Materials	41
3.1.1. Pomegranate fruit	41
3.1.2. Date press	41
3.1.3. Wheat flour (72% ext.) and other ingredients	41
3.2. Methods	42
3.2.1. Processing of pomegranate seeds powder	42
3.2.2. Processing of date press powder	43
3.2.3. Preparation of some bakery products	44
3.2.3.1. Preparation of some sweet biscuits	44
3.2.3.2. Preparation of salted biscuits	46
3.2.3.3. Packaging for produced biscuits	49
3.3. Analytical methods	50
3.3.1. Chemical analysis	50

	Page
3.3.2. Total calories	50
3.3.3. Determination of sugars	50
3.3.4. Determination of minerals	51
3.3.5. Determination of total dietary fibers	51
3.3.6. Determination of total phenolis content	51
3.3.7. Determination of total flavonoids content	52
3.3.8. Fractionation of phenolic compounds by HPLC	52
3.3.9. Fractionation of flavonoid compounds by HPLC	53
3.3.10. Water and oil absorption capacity (WAC and	
OAC)	53
3.3.11. Determination of rheological properties of Wheat	
(72% extraction)	53
3.3.11.1. Farinograph tests	53
3.3.11.2. Extensograph tests	54
3.3.11.3. Determination of wet and dry gluten and gluten	
index for wheat flour	55
3.3.12. Water activity (a_w)	56
3.3.13. Quality testing of products during storage at room	
temperature	56
3.3.13.1. Extraction lipid from sweet and salted biscuits	56
3.3.13.2. pH value	57
3.3.13.3. Acid value and Free fatty acids	57
3.3.13.4. Peroxide value	57
3.3.14. Physical properties	58
3.3.15. Texture Profile Analysis	58
3.3.16. Color measurements of sweet and salted biscuits	59
3.3.17. Sensory evaluation	60
3.3.18. Recommended dietary allowances % (RDA)	60

	Page
3.4. Statistical analysis	60
4. RESULTS AND DISCUSSION	61
Part I	61
4.1. Raw materials	61
4.1.1. Rheological properties of the wheat flours (72%	
extraction)	61
4.1.2. Proximate chemical composition of raw materials	64
4.1.3. Minerals content of raw materials	67
4.1.4. Dietary fibers and it's fractions of raw materials	68
4.1.5. Total sugars, reducing sugars and non-reducing	
sugars of used raw materials	69
4.1.6. Total phenols (TP), total flavonoids (TF) of	
pomegranates seeds powder (PSP) and date press	
powder (DPP)	70
4.1.7. Identification of phenolic compound of	
pomegranate seed pomace and date press	
powders	71
4.1.8. Flavonoid fractions of pomegranate seeds and date	
press powders	73
4.1.9. Iso-Flavon fractions content of pomegranate seeds	
powder and date press powders	74
4.1.10. Functional properties of pomegranate seeds and	
date press powders	75
Part II	77
4.2. Sweet biscuits	77
4.2.1. Sensory evaluation of the produced sweet biscuits	77

	Page
4.2.2. Proximate chemical composition of produced	
sweet biscuit mixtures with different levels	
pomace of pomegranate seeds and date press	
powders	80
4.2.3. Minerals content of sweet biscuit mixtures with	
pomace of pomegranate seeds and date press	
powders	83
4.2.4. Total, reducing and non-reducing sugars of sweet	
biscuit	85
4.2.5. Effect of storage period at room temperature	
$25\pm2^{\circ}C$ on the chemical composition of sweet	
biscuits	87
4.2.5.1. Effect of storage period at room temperature	
25±2°C on moisture content and water activity	
of sweet biscuit mixtures	87
4.2.5.2. Effect of storage period at room temperature	
25±2°C on protein, ether extract, ash, crude	
fiber and available carbohydrate of sweet	
biscuit	91
4.2.6. Effect of storage period at room temperature	
25±2°C on pH, AV, FFA, and PV of sweet	
biscuit mixtures	96
4.2.6.1. Changes in pH values of sweet biscuit during	
storage period at room temperature 25±2°C	96
4.2.6.2. Changes in acid value (AV) of sweet biscuit	
during storage at room temperature (25±2°C)	97

-vi-

	I ugu
4.2.6.3. Changes in FFA values of produced biscuit	
during storage period at room temperature	
$25\pm2^{\circ}C$	98
4.2.6.4. Changes in peroxide values (PV) of biscuit lipids	
during storage period at room temperature	
$25\pm2^{\circ}\mathrm{C}$	99
4.2.7. Effect of storage period at room temperature	
$25\pm2^{\circ}C$ on physical properties of sweet biscuit	102
4.2.8. Effect of storage period at room temperature	
$25\pm2^{\circ}C$ on hardness, adhesiveness and resilience	
of sweet biscuit	107
4.2.9. Effect of storage period at room temperature	
25±2°C on color of sweet biscuit mixtures	110
4.2.10. Effect of storage period at room temperature	
25±2°C on sensory evaluation of sweet biscuit	
mixtures	112
4.2.11. Percentages of the recommended dietary	
allowances (%RDA) are provided from selected	
sweet biscuit mixtures	117
Part III	119
4.3. Production salted biscuits	119
4.3.1. Sensory evaluation of produced salted biscuits	119
4.3.2. Proximate chemical composition of produced	
salted biscuit mixtures with different levels	
pomace of pomegranate seeds and date press	
powders	121

	Page
4.3.3. Minerals content of salted biscuit mixtures with	
pomace of pomegranate seeds and date press	
powders	123
4.3.4. Total sugars, reducing sugars and non-reducing	
sugars of salted biscuit	125
4.3.5. Effect of storage period at room temperature	
$25\pm2^{\circ}C$ on the chemical composition of salted	
biscuits	126
4.3.5.1. Effect of storage period at room temperature	
25±2°C on moisture content and water activity	
of salted biscuit mixtures	126
4.3.5.2. Effect of storage period at room temperature	
25±2°C on protein, ether extract, ash, crude	
fiber and available carbohydrate of salted biscuit	129
4.3.6. Effect of storage period at room temperature	
25±2°C on pH value, acid value (AV), free fatty	
acid (FFA), and peroxide value (PV) of salted	
biscuit mixtures	134
4.3.6.1. Changes in pH value of produced biscuit during	
storage at room temperature 25±2°C	134
4.3.6.2. Changes in acid value (AV) of produced biscuit	
during storage at room temperature (25±2°C)	135
4.3.6.3. Changes in free fatty acid (FFA) values of	
biscuit during storage at room temperature	
$25\pm2^{\circ}C$	136
4.3.6.4. Changes in peroxide values (PV) of biscuit lipids	
during storage period at room temperature	137
$25\pm2^{\circ}\mathrm{C}$	

	Page
4.3.7. Effect of storage period at room temperature	
25±2°C on physical properties of salted biscuit	140
4.3.8. Effect of storage period at room temperature	
25±2°C on hardness, adhesiveness and resilience	
of salted biscuit	144
4.3.9. Effect of storage period at room temperature	
25±2°C on color of salted biscuit mixtures	146
4.3.10. Effect of storage period at room temperature	
25±2°C on sensory evaluation of salted biscuit	
mixtures	148
4.3.11. Percentages of the recommended dietary	
allowances (%RDA) are provided from selected	
salted biscuit mixtures	153
5. SUMMARY AND CONCLUSION	155
6. REFERENCES	171
7. ARABIC SUMMARY	

LIST OF TABLES

Table	Title	Page
No.		
1	Mixtures and ingredients used in making	
	different treatments of sweet biscuits.	45
2	Mixtures and ingredients used in making	
	different treatments of salted biscuits.	48
3	Rheological characteristics of wheat flour (72%	
	extraction rates).	62
4	Proximate chemical composition of raw	
	materials.	66
5	Minerals content of raw materials (mg/100 g on	
	dry weigh basis).	68
6	Dietary fibers and its fractions of pomegranate	
	seeds and date press powders (g/100 g on dry	
	weight basis).	69
7	Total sugars, reducing sugars and non-reducing	
	sugars of raw materials (on dry weight basis).	70
8	Total phenols and total flavonoids of	
	pomegranate seeds and date press powders.	71
9	Identification of phenolic compounds of	
	pomegranate seeds and date press powders by	
	HPLC (mg/100 g on dry weight basis).	72
10	Flavonoid compounds of pomegranate seeds	
	and date press powders by HPLC (mg/100 g on	
	dry weight basis).	74

Table	Title	Page
No.		
11	Iso-Flavon fractions content of pomegranate	
	seeds and date press powders by HPLC (mg/100 $$	
	g on dry weight basis).	75
12	Functional properties of pomegranate seeds and	
	date press powders.	76
13	Sensory evaluation of sweet biscuits produced	
	from wheat flour (72% ext.) substituted with	
	different levels of pomegranate seeds powder or	
	date press powder.	79
14	Proximate chemical composition of produced	
	sweet biscuit from wheat flour substituted with	
	different levels pomace of pomegranate seeds	
	and date press powder (% on dry weight basis).	82
15	Minerals content of produced sweet biscuits	
	from wheat flour substituted with different	
	levels of pomace of pomegranate seeds and date	
	press powders (mg/100 g on dry weight basis).	84
16	Total, reducing and non-reducing sugars of	
	produced sweet biscuit from wheat flour (72%	
	ext.) with different levels of pomace of	
	pomegranate seeds and date press powders (on	
	dry weight basis).	86
17	Effect of storage period at room temperature	
	$25\pm2^{\circ}C$ on moisture content and water activity	
	of sweet biscuit mixtures.	90

Table	Title	Page
No.		Ŭ
18	Effect of storage period at room temperature	
	25±2°C on protein, ether extract, ash, crude	
	fiber and available carbohydrate contents of	
	sweet biscuit (g/100 g on dry weight basis).	94
19	Effect of storage period at room temperature	
	25±2°C on pH, AV, FFA, and PV of sweet	
	biscuit mixtures.	101
20	Effect of storage period at room temperature	
	$25\pm2^{\circ}C$ on physical properties of sweet biscuit.	105
21	Effect of storage period at room temperature	
	25±2°C on hardness adhesiveness and	
	resilience of Sweet biscuit.	109
22	Effect of storage period at room temperature	
	$25\pm2^{\circ}C$ on color L*, a*, b*, c* and h* of sweet	
	biscuit mixtures.	111
23	Effect of storage period at 25±2°C on sensory	
	evaluation of sweet biscuit mixtures.	114
24	Percentage of the RDA for some nutrient	
	provided from 100 g selected sweet biscuit.	118
25	Sensory evaluation of salted biscuits produced	
	from wheat flour (72% ext.) substituted with	
	different levels of pomegranate seeds powder	
	date press powder.	120

Table	Title	Page
No.		0
26	Chemical composition of produced salted	
	biscuit from wheat flour substituted with	
	different levels of pomace of pomegranate seeds	
	and date press powders (% on dry weight basis).	122
27	Minerals content of produced salted biscuit	
	from wheat flour substituted with different	
	levels of pomace of pomegranate seeds and date	
	press powders (mg/100 g on dry weight basis).	124
28	Total, reducing and non-reducing sugars of	
	produced salted biscuit from wheat flour	
	(72% ext.) with different levels of pomegranate	
	seeds and date press powders (on dry weigh	
	bases).	125
29	Effect of storage period at room temperature	
	$25\pm2^{\circ}$ C on moisture content and water activity	
	of salted biscuit mixtures.	128
30	Effect of storage period at $25\pm2^{\circ}C$ on protein,	
	ether extract, ash, crude fiber and available	
	carbohydrate contents of salted biscuit.	132
31	Effect of storage period at room temperature	
	$25\pm2^{\circ}C$ on pH value, acid value (AV), free	
	fatty acid (FFA), and peroxide value (PV) of	
	salted biscuit mixtures.	139
32	Effect of storage period at 25±2°C on physical	
	properties of salted biscuit.	142

Table	Title	Page
No.		
33	Effect of storage period at room temperature	
	25±2°C on Hardness Adhesiveness and	
	Resilience of salted biscuit.	145
34	Effect of storage period on color L^* , a^* , b^* , c^*	
	and h^o of salted biscuit mixtures.	147
35	Effect of storage period at 25±2°C on sensory	
	evaluation of salted biscuit.	150
36	Percentage of the RDA for some nutrient	
	provided from 100 g selected salted biscuits.	154

Fig.	Title	Page
No.		
1	Pomegranate seeds powder	42
2	Date press powder	43
3	Flow chart for preparation of sweet biscuits	46
4	Flow chart for preparation of salted biscuits	49
5	Farinogram of soft and semi hard wheat flour (72%	
	ext.)	63
6	Extensogram of soft and semi hard wheat flour	
	(72% ext.).	63
7	Sweet biscuit produced from wheat flour	
	substituted with different levels of pomegranate	
	seeds powder or date press powder.	80
8	Selected sweet biscuit (S) produced from wheat	
	flour (WF2) containing different levels of	
	pomegranate seeds powder (PSP) or date press	
	powder (DPP).	116
9	Salted biscuits produced from wheat flour	
	substituted with different levels of pomegranate	
	seeds powder or date press powder.	121
10	Selected salted biscuit (C) produced from wheat	
	flour (WF2) containing different levels of	
	pomegranate seeds powder (PSP) or date press	
	powder (DPP).	152

LIST OF ABBREVIATION

%	Percentage
AACC	American Association of Cereal Chemists
AOAC	Association of Official Analytical Chemists
ANOVA	Analysis of variance
°C	Centigrade degree
Ca	Calcium
Cm	Centimeter
Co.	Company
DPP	Date press powder
DW	Dry Weight
Ed	Editor
e.g	For example
et al	And others
Ext.	Extraction
FAO	Food and Agriculture Organization
FDA	Food and Drug Administration
Fe	Iron
Fig.	Figure
g	Gram
WF2	Semi hard wheat flour (72% ext.)
i.e	That is
J	Journal
K	Potassium
Kg	kilogram
mg	Milligram
μg	Microgram

1.4.	
Min.	Minute
Na	Sodium
No.	Number
PSP	Pomegranate seeds powder
Sci.	Science
Sec.	Second
WF1	Soft wheat flour (72% ext.)
ТРА	Texture Profile Analysis
WHO	World Health Organization
Zn	Zinc
DF	Dietary fibers
TDF	Total dietary fibers
SDF	Soluble dietary fibers
ISDF	Insoluble dietary fibers

1. INTRODUCTION

Agricultural by-products originated from food processing factories represented one of the permanent environmental problems. Nowadays, trends were raised to utilize these valuable wastes full of nutraceuticals and phytochemicals (**Schieber** *et al.*, **2001**).

Kumar *et al.*, (2017) declared that huge amount of fruit and vegetable residues by-products from food sector industry increased continuously. Liu (2004), Kiokias *et al.*, (2016) and Varzakas *et al.*, (2016) pointed to the usefulness of plant residues containing bioactive phytochemicals related to health management, reduced risk of chronic diseases, and could be directed to food-related industries.

Recent studies have shown that pomegranate seeds might be a potential source of antioxidants and nutrients. Furthermore, it has been suggested that food supplementation with pomegranate seeds may prevent DNA damage, reduce the risk of cancer and also reduce the symptoms of menopause. The advantageous of pomegranate seeds are related to the presence of biologically active components especially polyphenols, which their antioxidant effects have been studied. In addition, significant amounts of compounds with polyphenolic structures were detected in pomegranate seeds (**Jing** *et al.*, **2012**). Seeds also contain protein, crude fibers, vitamins, minerals, pectin, sugars, polyphenols, isoflavones, the phytoestrogens, coumestrol and the sex steroid estrone (**Aruna** *et al.*, **2016**).

Dietary fiber (DF) may be divided into two parts when it is dispersed in water: a soluble and an insoluble fraction (**Perigo** *et*