STUDIES ON BOLLWORMS INFESTING COTTON IN SHARKIA GOVERNORATE, EGYPT

ABSTRACT

Certain ecological and control studies on both pink and spiny bollworms, *Pectinophora gossypiella* (Saund.) and *Earias insulana* (Boisd.), respectively infesting cotton plants were conducted in Belbeis district, Sharkia Governorate during three successive years (1997-1999). Moreover, laboratory toxicological studies on some insecticides were executed in the laboratory of plant protection Institute (Sharkia Branch) during 2000/2001 at Zagazig. The main lines of these studies can be summarized as follows:

1- Field Ecological and Control Studies

1.1- Flight activity of male moths

The first appearance of male moths of both pink and spiny bollworms in specific sex pheromone traps was detected through the first quarter of the investigating year and varied from one year to another. After the insect initial incidence, it fluctuated in numbers to show different numbers of population activity peaks ranging from 9 to 15 peaks for pink bollworm and from 11 to 13 for spiny bollworm according to the investigating year. The highest levels of maximum abundance of 836.00, 238.66, 359.66 male moths/traps for pink bollworm and 127.66, 96.66, 47.66 for

spiny bollworm were occurred on 11th of September, 22, 15th of October and 29th, 1st, 15th of October in the first, second and third years; respectively.

According to the effect of temperature, relative humidity and night period on the seasonal population fluctuations of pink bollwrom, these factors can be arranged descendingly as follows: temperature, night period and relative humidity. But in case of spiny bollworm, the order was different and varied from one year to another showing the following arrangement: night period, temperature and relative humidity in 1997 and 1998 years, whereas in 1999 a switch in position between the first and second factors was taken place.

1.2- Seasonal population fluctuation of larvae

Cotton green bolls began to be infested with pink bollworm larvae in the end of June and the beginning of July, whereas the initial incidence of the spiny bollworm occurred lately by about four weeks showing relatively low numbers. After the larvae first appearance, they gradually increased in numbers to reach the highest abundances of 30.33, 31.33 larvae/33 bolls for pink bollworm and 31.17, 30.19 for spiny bollwrom, respectively at the end of cotton growing season (19th of September). As regards, the impact of some weather factors on pink bollworm larval population, it is evident that the most effective factor was temperature, whereas the lowest one was relative humidity. In case of spiny bollowrm, sunshine period

proved to be the most effective factor and the lowest one was relative humidity in the first season and temperature in the second.

1.3- Relationship between pheromone trap catch and cotton green bolls infestation

Simple correlation coefficients between weekly mean numbers of male moths captured in the sex pheromone traps and the corresponding degree of green bolls infestation measured as either % of bolls infestation or larval population density per 33 bolls were calculated during 1998 and 1999 cotton growing seasons in untreated and treated plots with S-fenvalerate, profenofos and thiodicarb in six programs for both pink and spiny bollwroms. The obtained results indicated that all coefficients proved to be positive and statistically significant and highly significant for the two studied infestation parameters for each of pink and spiny bollworms during both first and second seasons for a period of 13 weeks from 26th of June to 19th of September.

1.4- Evaluation of some insecticides against pink and spiny bollworms

Three conventional insecticides i.e., S-fenvalerate (F), profenofos (P) and thiodicarb (T) were evaluated against both pink and spiny bollworms on cotton plants using six different spray programs i.e, spraying each of the tested insecticides

individually in one spray (F,P,T), spraying S-fenvalerate in the first spray and followed by profenofos in the second (F+P), spraying profenofos in the first spray and follwood by thiodicarb in the second (P+T), and spraying S-fenvalerate in the first spray and followed by profenofos in the second spray and then thiodicarb in the third (F+P+T). These programmes were started when percent of bolls infestation reached 1,3,5,7 and 9% through two consecutive cotton growing seasons. F+P and F+P+T spray programs seemed to be the most efficient against pink and spiny bollworms as cotton plants treated with them showed low percents of bolls infestation with each and yielded high amounts of seed cotton. Cotton plants treated by different spray programs at 5% bolls infestation were less infested by both bollworms and gave the highest yield compared either with other tested levels or with check experiment. Consequently, F+P program can be recommended to control pink and spiny bollworms in cotton fields and the third spray of the other program can be excluded and this is very useful for reducing control costs as well for increasing activity of parasitic and predaceous natural enemies of insects and true spiders. All tested programs had an adverse effect on predaceous arthropods prevailing in cotton fields.

2- Laboratory Bioassay Studies on Pink Bollworm

According to toxicity data of three conventional insecticides, S-fenvalerate was the most toxic compound against newly hatched larvae as compared with profenofos and

thiodicarb. By comparing treated larvae with check individuals, the latent effects on some biological aspects of the tested insects can be clarified in the following points:

- 1- Both insecticides and concentrations used from each caused a considerable shortness in the durations of egg, larval, pupal and adult stages. The same effect was also detected with female oviposition periods (pre-oviposition and postoviposition).
- 2- Weight of both 4th instar larvae and pupae resulting from treated larvae was greatly reduced by tested insecticides and concentrations as compared with untreated individuals.
- 3- Insecticidal treatments in different concentrations had a great depressing influence on some biological characters such as percent of pupation from alive larvae after treatment, sex ratio of adults (% males), hatchability percentage of eggs deposited by females resulting from treated neonate larvae and their fecundity of eggs. On the other hand, these treatments did not show a noticeable impact on the percentage of adult emergence from pupae forming from alive larvae after treatment.
- 4- The quantal graded scoring of abnormality for larval-adult transformation showed six different scores. S-fenvalerate did not show any malformed individuals. Profenofos compound proved to have a higher teratological effect on pink bollworm than that of thiodicarb.

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	5
1-Field Ecological and Control Studies	5
1.1-Seasonal population activity of male moths and	
larvae of pink and spiny bollworms	5
1.2-Control of pink and spiny bollworms by certain	
conventional insecticides	33
2- Laboratory Bioassay Studies on bllworms	56
MATERIALS AND METHODS	66
1- Field Ecological and Control Studies	66
1.1- Trapping of male moths by specific sex	
pheromones	66
1.1. 1- Sex pheromone used	66
1.1.2- Flight activity of male moths	67
1.1.3- Sesonal population fluctution of larvae and	
relationship between pheromone trap catch and	
green cotton bolls infestation	69
1.2- Evaluation of some conventional insecticides	70
1.2.1- Tested insecticides	70
1.2.2- Experiment execution	72

1.3- Side effect of tested insecticide programmes on	
certain natural enemies	
2- Laboratory Bioassay Studies	
2.1- Rearing technique	
2.2- Bioassay tests	
3- Statistical Analysis	
RESULTS AND DISCUSSION	
1- Field Ecological and Control Studies	
1.1-Flight activity of male moths	
1.1.1- The pink bollworm, Pectinophora gossypiella	
(Saund.)	
1.1.2-The spiny bollworm, Earias insulana	
(Boisd.)	
1.2- Seasonal population fluctuation of larvae	
1.2.1- The pink bollworn, Pectinophora gossypiella	
(Saund.)	
1.2.2-The spiny bollworm, Earias Insulana	
(Boisd.)	1
1-3 Relationship between pheromone trap catch and	
cotton green bolls infestation	1
1.3.1-The pink bollworm, Pectinophora gossypiella	
(Saund.)	

1.3.2-The	spiny	bollworm,	Earias	insulana	
(Boi	isd.)				12
1.4-Evalua	tion of so	me insecticio	les agains	t pink and	
spiny b	ollworms	S			12
1.4.1-Effec	t of diff	erent spray	programm	es on the	
perce	ntage of b	olls infestation	on		12
1.4.1.1-The	pink bol	lwrom, Pecti	nophora g	ossypiella	
(Sau	nd.)				12
1.4.1.2-The	spiny	bollworm,	Earias	insulana	
(Boi	sd.)				13
1.4.2-Effec	t of diffe	erent spray p	rogramme	s on seed	
cotto	on yield				13
1.4.3-Recap	pitulation	of data			14
1.4.4-Effec	t of cer	tain spray p	rogramme	s on the	
occur	rence of s	ome predaced	ous arthrop	oods	14
2- Labor	atory	Bioassay S	tudies (on Pink	
Boll	worm				15
2.1- Toxic	effect				15
2.1.1 - Co	mpaeisor	on basis of	f LC ₅₀	and LC ₉₀	
valu	es				15
2.1.2-Comp	arison or	a basis of toxi	city index		15
2.1.3-Comp	arison or	basis of rela	tive poten	cy	15

2.1.4-Comparison on basis of slope of toxicity lines	
and LC ₉₀ /Lc ₅₀ ratio	159
2.2- Latent effect	161
2.2.1- Duration of larval stage	162
2.2.2- Pre-pupal period	164
2.2.3- Larval weight of the 4 th instar	165
2.2.4- Percent of pupation	167
2.2.5- Duration of pupal stage	168
2.2.6- Pupal weight	170
2.2.7- Percent of adult emergence	170
2.2.8- Sex ratio of emerged adults	173
2.2.9- Oviposition periods of emerged females	174
2.2.10- Duration of adult stage	177
2.2.11- Female fecundity	180
2.2.12- Duration of egg stage	182
2.2.13- Hatchability of eggs	183
2.2.14- Malforming effect	184
SUMMARY	196
CONCLUSIONS	211
REFERENCES	212
ARABIC SUMMARY	