CONTENTS

Page

HIN TRODUTION	1
3-REVIEW OF LITERATURE	2
2-1 Alleviation of heat stress	2
2.1.1. Physical techniques	2
2 2 Physiological techniques	7
1.1.3. Nutritional techniques	8
::: I ffect of cooling techniques on Water consumption	10
: Fifect of cooling techniques on Dry matter intake	12
34 Fifect of cooling techniques on Daily weight gain	14
3.4. Effect of cooling techniques on Feed utilization	17
• Effect of cooling techniques on Thermoregulation responses	19
24 : Rectal temperature	19
3. Respiration rate	21
• I fleet of cooling techniques on Hematological responses	25
: Hemoglobin	25
Control count of white blood cells	27
273 Total proteins	28
Total lipids	30
34 Effect of cooling techniques on Thyroid functions	33
-• Thyroxin	34
:-•: Friiodothyronine	35
3.4 Effect of cooling techniques on Testosterone	37
ATTERIALS AND METHODS	39
J 1 Experimental aims	39
B : Experimental animals	39
S: Experimental procedures	41
34 Experimental parameters	43
🛏 🗄 Thermo respiratory responses	43
34 Live body weight and daily body weight gain	44
34.3 Feed performance	44
us Water consumption	45
Solution Blood components	45
J +5 1. Blood sampling	45
3-4-5.2. Hemoglobin	46
3-4-5.3. White blood cells	46
S4 · Blood hormones	46
5.4-0.1. T ₃ , T ₄ and testosterone hormones	46

3-4.7 Blood metabolites	A (
2 A 7 1 Plosmo total protoing and total linida	40
5-4-7.1. Plasma total proteins and total lipids	4(
3-5. Statistical analysis	47
4-RESULTS AND DISCUSSION	48
4-1. Effect of cooling techniques on Water consumption	48
4-2. Effect of cooling techniques on Dry matter intake	53
4-3. Effect of cooling techniques on Daily weight gain	58
4-4. Effect of cooling techniques on Feed utilization	64
4-5. Effect of cooling techniques on Thermoregulation	
responses	70
4-5.1. Rectal temperature	70
4-5.2. Respiration rate	76
4-6. Effect of cooling techniques on Hematological responses	83
4-6.1. Hemoslohin	83
4-6.7 Total count of white blood cells	88
4 6 7 Total spatalno	00
4-0.3. 10tal proteins	73
4-6.4. Total lipids	97
4-7. Effect of cooling techniques on Thyroid functions	101
4-7.1. Thyroxin	101
4-7.2. Triiodothyronine	105
4-8. Effect of cooling techniques on Testosterone	11
5- CONCLUSION AND RECOMMENDATIONS	115
6. SIIMMARV	111
7. DEFEDENCES	121
7~ ΚΕΓΕΚΕΊΝCES	141

CONCLUSION AND RECOMMENDATION

Summing up the points of comparison between the two cooling treatments and control group during the experimental months, under study, and their effects on the physiological responses of the animals could be discussed in accordance with the obtained data from this study.

It's clear that, using spraying cooling system was the best systems enhancing for animals performance, whereas, it decreased significantly water consumption (WC), feed conversion (FC), rectal temperature (RT) and respiration rate (RR). While, it increased significantly daily weight gain (DWG), white blood cells (WBC), triiodothyronine (T₃), feed efficiency (FE), hemoglobin% (Hb%), total protein (TP), thyroxin (T₄) and testosterone, comparing with control group.

Showering cooling system also, enhanced animal's performance, but less than the previous system and more than control group, whereas, it decreased WC (more than the others systems), RT and RR. While, it increased DWG, WBC, Hb%, TP, T_4 and T_3 Also, showering had no significant effect on FC, FE and testosterone comparing with the spraying group.

Also, experimental months affected significantly on some parameters, whereas, it was increased significantly WC, dry matter intake (DMI) and WBC ascending through experimental months. And decreased DWG, TP and T₄, also increased RT and RR during Jul. (M₂) and Augu. (M₃). The opposite was happened during Jun. (M₁) and Sept. (M₄). The second and third month had a positive effect on FC, FE and T₃, whose began increase significantly through M₄.

CONCLUSION AND RECOMMENDATION

Experimental months affected on Hb% testosterone by the same trend, whereas, they had no significance through the first three months, then has significant difference through M_4 .

In conclusion, using spraying system as mean elevating heat stress on exotic breeds to improved performances under hot seasons, was the best economic way of the two experimental means and recommended great farms. Also, using showering system was less effect than the previous system and more positive effect than cononly. It was simple mean for dissipating heat stress of an during hot summer, so that, it recommended for small and farmers owned remarkable animals.

6-SUMMARY

This study was carried out at Animal Production Research Institute in participation with Animal Production Department, Faculty of Agriculture, Moshtohor. The experimental work was conducted at Ali-Ezet farm- Meat Land Company- during summer (from Jun. to Sept. 1999).

This study aimed to improve productivity of European and exotic breeds under hot-humid summer conditions in Egypt. The experimental part wes condacted on15 growing Holstein Friesian calves, aged about 8 months and weighted about 210 kg, assigned into 3 equal groups, kept separately under loose semi shaded yards, and fed ad-lib. at 8 am. (berseem hay, rice straw, great millet fodder and concentrate mixture).

The first group (G_1) was used as a control group for G_2 and G_3 . The second group (G_2) was treated with spraying cooling system. The third group (G_3) was treated with showering cooling system.

The mean results could be summarized as follows: -

1- Thermoregulation responses:

-Rectal temperature (RT) and respiration rate (RR) decreased significantly by using cooling systems in G₂ and G₃ comparing with G₁, they were $(38.94\pm0.01 \text{ and } 38.94\pm0.01\text{ c}^{\circ} \text{ vs.}39.0\pm0.01\text{ c}^{\circ};$ and 50.02 ± 0.34 and 49.94 ± 0.34 r.pm vs. 52.78 ± 0.19 r.pm), respectively.

-Also, RT and RR increased significantly through M_2 (Jul.) and M_3 (Augu.) than that of M_1 (Jun.) and M_4 (Sept.).

SUMMARY

-Both of RT and RR affected by daytime; at 7am., the decreased significantly (p<0.05) for G_1 than those of G_2 and G_3 . At 2pm. (under using cooling system), RT and RR of G and G_3 decreased significantly than G_1 . But, at 7pm. (affective cosstation of cooling systems), both of RT and RR of G_2 and G increased significantly than G_1 .

2- <u>Water consumption</u> (WC):

-The water consumption (WC) decreased significantly (p<0.05 by the effect of cooling systems. And, the lowest WC was obtained in calves exposed to showering cooling system in G (35.15 L/d). Also, calves exposed to spraying cooling system G_2 , had a lower WC (36.47 L/d.) than control shaded calves G_1 (45.56 L/d.).

-Water consumption (WC) gradually increases significants through experimental months from M_1 (Jun.) to M_4 (september whereas, the lowest value (34.75 L/d) was obtained in M_1 and the highest one (42.82 L/d) was obtained in M_4 .

3- Dry matter intake (DMI):

-It did not affected significantly as a function of cooling water applications.

-Months affected significantly (p<0.001) on DMI, whereas increased gradually from M₁ (Jun.) to M4 (Sept.) by increasing the requirements of the animals.

4- <u>Daily weight gain</u> (DWG):

-Daily weight gain enhanced significantly (p<0.001) by cooling systems in G_2 and G_3 than in G_1 , they were (1.46 and 1.34 vs. 1.23 kg/d, respectively) whereas, spraying cooling system improved DWG more significantly than using showering by about 8.3%.

-Also, DWG affected significantly by month, whereas, DWG means of M_1 (Jun.) and M_4 (Sept.) were higher than that of M_2 (Jul.) and M_3 (Augu.). The highest gain observed in M_4 and the lowest one was obtained in M_3 .

5- Feed utilization (FU):

-Spraying improved significantly (p<0.05) FC and FE in G_2 compared with G_1 . Also, as values, showering increased FC and decreased FE than G_2 , although, no significant statistical differences between them.

-Feed conversion (FC) increased gradually during the first three months, reached its maximum at M_3 (from 5.48±0.112 for M_1 to 7.8±0.128 kg DMI for M_3) then, decreased then after at last month M_4 (7.14±0.21 kg DMI). The opposite trend was observed for FE, which decreased until M_3 (0.129±0.002 kg gain), then began increased in M_4 , where, reached to 0.141±0.004 kg gain.

6- Hematological responses:

-Using spraying cooling system improved significantly (p<0.05) Hb%, WBC_s and TP. Whereas, using showering cooling system enhanced Hb% and TP without significant

differences with spraying system, also it improved WBC a line lower than spraying. Control group recorded the lowest value in Hb%, WBC and TP. Also it had no significant difference TL.

-Experimental months had significant (p<0.05) effect on Hb Whereas, M₄ had the highest value than the others months which had no significant differences between them. WBC increased gradually significantly from M₁ to M₄. TP increases significantly through M₁ and M₄ and decreased in M₂ and (4.52±0.14 and 4.58±0.16 g/dl ver. 4.09±0.14 4.08±0.13g/dl, respectively). Whereas; experimental months had no significant effect on TL.

7- <u>Hormonal responses:</u>

-Using spraying system improved significantly (p<0.05) T4, and testosterone than control group. Also, using shower system enhanced T₄ and testosterone, without significant differences with the spraying system. Whereas, shower improved significantlyT₃, but it was a little pet lower significance than spraying system.

-Experimental months affected significantly (p<0.05) on T and testosterone. T₄ improved significantly during M₁ and but it affected negatively by M₂ (Jul.) and M₃ (Augu.), with significant differences between each two months. Whereas recorded the highest significant concentration in M₄ (See then in M₁ (Jun.), and the lowest one was observed in Testosterone concentration mean through M₁ was (4.35±0 ng/dl) and then it decreases through M₂ and M₃, with significant differences between these months (3.67±0.4 3.69±0.41 ng/dl, respectively), then after, it reached maximum in M₄ (6.48±0.38 ng/dl).