Abstract

Hoda Mahmoud Waziri , Physicochemical Studies on Barley Yellow Dwarf Virus., Unpublished Ph.D. Thesis, Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt, 2003.

Barley Yellow Dwarf luteovirus-PAV (BYDV-PAV) is considered to be the most common virus for small grains, especially barley and wheat in Egypt.

In this study, An Egyptian isolate of BYDV-PAV (EGY-PAV) was purified from infected oat leaf tissue by modified procedure which included clarification of sap extracts with chloroform-amylalcohol. followed by with concentration polyethelene glycol (PEG), then pelleted through a 30% sucrose cushion and further purified by sucrose density gradients. Ultraviolet spectrum showed a typical curve of nucleoprotein with an A260/280 ratio ranged from 1.75 to 1.80. The yield of purified virus was ranged from 1.5 to 1.6 mg/kg of infected tissue. Isometric virus particles of 25 nm in diameter were detected in the purified preparation when examined by the transmission electron microscope. The polyclonal antibodies against EGY-PAV was produced and the dilution end point of IgG and IgG conjugate was determined using DAS-ELISA. The genomic ssRNA was extracted from EGY-PAV purified particles and its size length was about 5.6 kb when determined by agarose gel electrophoresis. The IC/RT-PCR was carried out using EGY-PAV-IgG and specific primers to amplify the entire coat protein (CP) gene of c.600 bp from EGY-PAV genomic RNA. The CP gene was cloned into plasmid vector, and then the recombinant plasmid was transformed into E.coli competent cells. Our results using endonuclease EcoR1 restriction enzyme identified the inserts of CP gene with the expected size (c.600 bp).

Data of nucleotide sequencing identified exactly 600 bp for EGY-PAV CP gene and be translated into 200 amino acids with molecular weight of 22 kDa. Our results proved the presence of 17 kDa virion protein genomic linked (VPg) embedded in the open reading frame (ORF) of the CP gene. The computer data of multiple alignment of nucleotide and deduced amino acid sequences between the EGY-PAV and other PAV isolates from the GenBank indicated that the highest (99.0 and 98.5%)and the lowest (76.0 and 73.0%) percent similarity were observed with the French and Chinese isolates, respectively.

Key words: Barley yellow dwarf virus (BYDV), IC/RT-PCR, CP gene, Cloning, Nucleotide sequence, Similarity.

CONTENTS

Page

I INTRODUCTION	1
II REVIEW OF LITERATURE	3
III MATERIALS AND METHODS	21
Part I Purification and serological studies	21
1 Virus source	21
1.1. Propagation of BYDV PAV	21
1.2 Virus purification.	22
2. Electron microscopy examination	23
3. Production of aniserum	23
3.1. Rabbit immunization	23
3.2. Rabbit bleeding and separation of serum	24
4. Titration of antiserum	24
4.1. Antiserum cross adsorption	
4.2. Repeat enzyme -Linked immunosorbent assay	
(R-ELISA)	25
5. Isolation and purification of Immunoglobulin G (IgG)	
antibody	26
6. Labeling of IgG with alkaline phosphatase	26
7. Determination of IgG and IgG conjugate end point	27
Part II Molecular Studies.	28
8. Determination of molecular weight of BYDV-PAV coat	20
0 Primar designed for amplification of PVDV PAV sect	28
9. Frimers designed for amplification of BYDV-PAV coat	28
10 Extraction of total RNA from infacted and healthy leaf	20
tissue.	27
11. Extraction of RNA from the purified virus	29
12. Immunocapture reverse transcription - polymerase chain	
reaction (IC/RT - PCR).	30
13. Reverse transcription polymerase chain reaction (RT-	
PCR)	31

Ι

Page

14. Agarose gel electrophoresis	32
15 Cloning of cDNA coat protein gene	32
15.1 Ligation	32
15.7 Transformation into F cali Top 10 F	32
15.2. Mining protocol for test the successful cloning	33
16 Analysis of the transformante	35
16.1. Destruction A nelucia proceedure	35
16.2 DCD using Universal Driver	37
17. DNA anamaina	37
17. DNA sequencing	20
18. Computer analysis	20
IV RESULTS	40
Part I Purification and serological studies	40
1. Transmission of the virus using membrane- feeding	
technique	10
2. Virus Purification	40
3.Electron microscope of EGY-PAV.	40
4. Production of antiserum specific to BYDV-PAV	
4.1. Purification and labeling of Immunoglobuling (IgG.)	
4.2. Determination of EGY-PAV IgG and IgG cougate	42
dilution end point	12.25
Part II Molecular Studies	42
5 Determination of molecular weight of RVDV goot protein	44
using SDS_PACE	
6 Estimation of concentration of extracted ECV DAV DNA	44
7 Electrophononic of ECV DAV DNA	45
7.Electrophoresis of EGY-PAV KNA	46
Brastien (IC (DT DCD)	
Reaction (IC / $RI - PCR$)	47
9. Amplification of EGY-PAV coat protein using RT-PCR	48
10. Cloning of the PCR Product into a Vector	49
11. Restriction Analysis of DNA from Minipreps	49
12. PCR Analysis Using M13 Primers	51
13. Sequencing of cloned EGY-PAV coat protein gene	52

Page

N.,

14. Comparison of EGY-PAV coat protein gene with other	
PAV isolates	52
V DISCUSSION	60
VI SUMMARY	71
VII REFERENCES	74
VIII APPENDEX	89
IX ARABIC SUMMARY	

LIST OF ABBREVIATIONS

	(A)
AMV	Avian Myeloblastosis Virus
App	Appendix
-11	(B)
bp	base pair
BSA	Bovine serum albumin
	(C)
cDNA	Complementary deoxyribonucleic acid
	(D)
DEPC	Diethypyrocarbonate
DIECA	Diethyl dithiocarbanate
DMF	Dimethylformamid
DNA	deoxyribonucleic acid
DTT	Dithiothreotol
	(E)
EDTA	Ethylene diamine tetra acetic acid
ELISA	Enzyme linked Immuno Sorbant Assay
E.coli	Escherichia coli
	(G)
GTC	Guanidine thiocyanate
	(H)
h	hour (s)
	(1)
IPTG	isopropyle – β -D-thiogalactoside
	(L)
LB	Luria –Bertani medium
	(M)
min	minute (s)
MMLV	Moloney murine leukemia virus
	(0)
() $()$	Ontical density

VII

VIII

(P)

PAGE	Polyacrylamide gel electrophoresis
PB	Phosphate buffer
PBS	Phosphate buffer saline
PBST	Phosphate buffer saline with tween 20
PCR	Polymerase chain reaction
pNPP	Para-Nitrophenyl phosphate
PVP	Polyvinylpyrolodin

(R)

RNA	Ribonucleic acid
RNase	Ribonuclease enzyme
RNase Inh	Ribonuclease Inhibitor
rpm	round per minute
RT	Reverse Transcription
RT-PCR	Reverse Transcription-Polymerase Chain Reaction

(S)

S	Second(s)
SDS	Sodium Dodecyl Sulphate

(T)

TAE	Tris-Acetate -EDTA (buffer)
Taq	Thermus aquaticus
TE	Tris/ EDTA (buffer)
Tfl	Thermus flavus

(U)

ultraviolet UV

X-gal

(X) 5-bromo-4-chloro-3-indolyle – β -D-galactoside