LIST OF CONTENTS

Subject	Page
	1
1. REVIEW OF LITERATURE	5
1.1. Seed borne fungi of groundnut	5
1.2. Seed borne fungi of corn	5
1.3. Definition of aflatoxins	7
1.4. Natural occurrence of aflatoxins $(B_1, B_2, G_1 \text{ and } G_2) \dots$	8
1.5. Structure and properties of aflatoxins $(B_1, B_2, G_1 \text{ and } G_2) \dots$	14
1.6. Types of aflatoxins and character of flatoxins B ₁	16
1.7. Toxicological effects of aflatoxin $(B_1, B_2, G_1 \text{ and } G_2) \dots$	16
1.7.1. Toxicological effect of aflatoxin B_1 could be divided	
into the following two parts	32
1.7.1.1. Carcinogenisty of aflatoxin B ₁	32
1.7.1.2. Acute toxicity of aflatoxin	41
1.8. Character of AFT B ₁ LD ₅₀ of rats	42
1.9. Effect of acute and chronic toxicity on rats	42
1.10. Effect of amount of protein in diets on rats	44
1.11. Definition and effect of lipid peroxidation	44
1.12. Safety of antioxidant vitamins and β -carotene	45
1.13. Vitamins E, C and other cartenoids as antioxidants	46
1.14. Interaction among vitamin C, E and β -carotene	47
1.15. Antioxidant activity of ascorbic acid and α -tocopherol in	
vitro studies.	48
1.16. Roles of vitamins on aflatoxins contaminated diet	49
1.17. Effect of vitamin E on aflatoxin	51
1.18. Effect of aflatoxin B ₁ on enzymes activities	52

1.19. Role of vitamin E in diets of rats	54
1.20. Effect of vitamin E on blood ALT, AST, GSH-Px activates	55
1.21. Biochemical changes of aflatoxicosis	56
1.22. Histopathology of aflatoxicosis	57
2. MATERIALS AND METHODS	62
METHODS	62
2.1. Materials	62
2.1.1. Peanuts and corn	62
2.1.2. Aflatoxins standards	62
2.1.3. Thin layer chromatography (TLC) plates	62
2.1.4. Media	62
2.1.5. Aflatoxins production	63
2.1.6. Animals and diagnostic kits	63
2.2. Methods	64
2.2.1. Isolation of molds from tested foodstuff	64
2.2.2. Identification of isolated molds	64
2.2.3. Maintenance of isolated molds	65
2.2.4. Aflatoxin extraction	65
2.2.4.1. From in vitro (fungal cultures)	65
2.2.5. Separation of aflatoxins	66
2.2.5.1. Thin layer chromatography (TLC) technology	66
2.2.5.2. Confirmation test	66
2.2.6. Detection of aflatoxins	66
2.2.6.1. Calculation of aflatoxins	67
2.2.7. Toxicological studies of aflatoxins B ₁	68
2.2.7.1. Animals (Experimental animals) for first	
experiment	68
2.2.7.2. Experimental design for first experiment	68

experiment
F
2.2.7.4. Experimental design for aflatoxin B_1 for
second experiment
2.2.8 Biochemical analysis 72
2.2.6 2.2.8 1 Blood sampling 72
2.2.8.1. Drood sampling
2.2.8.3 Determination of serum total protein 72
2.2.8.4 Determination of total cholesterol 72
2.2.8.5 Determination of urea 73
2.2.8.5. Determination of total hilimphin
2.2.8.0. Determination of total bilirubin
2.2.8.7. Determination of creatinine
2.2.8.8. Determination of serum transaminases (AST
and ALT) 74
2.2.9. Histopathological technique
2.2.10. Statistical analysis75
3. RESULTS AND DISCUSSION
3.1. Fungi isolated from seeds sample of peanut76
3.2. Fungi isolated from grains sample of corn
3.3. Screening of aflatoxin production by various isolates of fungi,
isolated from peanut and corn grown in liquid medium 77
3.4. Biochemical observation.78
3.4.1. Effect on activaties of plasma enzymes (ALT, AST,
ALP) 79
3.5. Biochemical analysis of blood of rats which injected with
aflatoxin B ₁ 79
3.5.1. Change in total protein
3.5.2. Change in total cholesterol

3.5.3. Change in bilirubin and urea	80
3.5.4. Change in creatinine and plasma enzymes(ALT & AST)	80
3.6. Histopathological changes	100
3.6.1. Rats liver	100
3.6.2. Rats kidney	102
3.6.3. Rats heart	104
3.6.4. Rats spleen	104
3.6.5. Rats lung	104
3.6.5. Rats brain	105
3.7. Discussion of histopathology	105
3.7.1. Effect on body weight and some organs of rats	105
3.7.2. The control group (-ve AFT)	107
3.7.3. Group of AFB_1 only	107
3.7.4. Effect of supplementation the contaminated diet with	
vitamins on rats.	107
4. SUMMARY	109
5. REFERENCES	111
6. ARABIC SUMMARY	1

LIST OF ABBREVIATION

FAO	Food Agricultural Organization
AFTB ₁	Aflatoxin B ₁
AFTB ₂	Aflatoxin B ₂
AFG ₁	Aflatoxin G ₁
AFG ₂	Aflatoxin G ₂
AF	Aflatoxin
TLC	Thin Layer Chromatography
UV	Ultraviolet
µg/kg	Microgram / kilogram
AST	Aspartate Aminotransferace
ALT	Alanine aminotranferace
IU/Kg	International Unites / kilogram
GSH-PX	Gluctothione peroxidase
ВНА	Butylatd hydroxyanisole
BHT	Butylated hydroxytaleuena
GT	Green tea
AFM	Aflatoxin
AFL	Aflatoxicol
LD ₅₀	Lethal dose for 50 % of animal test populations
Se	Selenium
Mg/kg B.W	Milligram / kilogram Body Weight
SGOT	Serum Glutamic Oxaloacetic transaminase
GOT	Glutamic oxaloacetic transaminase
ОСТ	Ornithine carbamyle transferase
IDH	Isociric dehydrogenase
ALP	Alkaline phosphate

PUFA	Polyunsaturated fatty acids
LDL	Low-density lipoprotein
AFT	Aflatoxin
YES	Yeast extract sucrose
g/L	Gram/Litre
PDA	Potato dextrose agar
CHE	Cholesterol esterase
CHOD	Cholesterol oxidase
MDH	Malate dehydrogenase
LDH	Lactate dehydrogenase
LSD	Least significant different
Vit.	Vitamin
BUN	Blood Urea Nitrogen
S.E.	Standard error
IP	Interperitoneal
Χ	Mean

SUMMARY

The aim of this study was to investigate, the toxicological effects of aflatoxins on male albino rats and the role of vitamins supplementation to overcome the toxicological effects of aflatoxins (AFT) in male rats.

The results revealed that:

- Results revealed that rats fed on AFT-contaminated diet showed decrease in liver and body weight, while kidney weight were increased in AFT treated group as compared with control group. The aflatoxin decreased growth rate, feed intake and feed efficiency.
- 2- Aflatoxin increased the glucose level and decreased the cholesterol level in blood. Activities of blood alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were increased by aflatoxin, however, the glutathione peroxidase (GSH-Px) activity in the blood was decreased by aflatoxin.
- 3- Histopathological study revealed severe degenerative and necrotic changes in liver and kidney.

4- In vitamins supplemented group:

The results showed that increase in the body weight was recorded in groups supplemented with vitamins A, β -corotene and E, and increase in liver weight after supplementation with vitamin E was recorded.

- The kidney weights of rats treated with vitamin A, β -carotene and vitamin C showed a decrease.
- ALP activity was decreased in β-carotene, vitamin C and vitamin E, supplemented groups.
- ALT activity was decreased in all vitamins supplemented rats.
- AST activity was decreased in β-caroatene groups.

- BUN (blood urea nitrogen) was decreased with β -carotene treatment compared with AFT treated group.
- Supplementation with vitamins improved the growth rate and significantly decreased the activities of ALP and ALT particularly after treatment with vitamins β-carotene, C and E. The severity of pathological changes was relatively less in all vitamins supplemented groups.
- Vitamins supplementation reduced the toxicity of aflatoxins through partially correcting and improving the biochemical parameters and histopathological changes.

Histopathological study:

• The study showed several degenerative and necrotic changes in liver and kidney.

Liver:

• The results showed that, degeneration of hepatic cells and diffused fatty change scattered allover the hepatic parenchyma.

Kidney:

• The results showed that dilatation and congestion of renal blood vessels associated with interstitial hemorrhage in between the renal tubules in addition to perivascular round cell aggregation.