Name of Candidate: Sohaier Taher EL-Hadidi Degree: Doctor of Philsophy

Title of Thesis: "Chemical and biological evaluation of cake products containing resistant starch and dietary fiber."

Supervisors: Dr: Mohamad, M. EL-Nikeety Dr: Mahamood. A. A Bekheit. ...

Department: Food Science and Technology, Faculty of Agriculture Cairo University

Branch: Rural Home Economic. Approval....../10/ 2006

Abstract

This investigation was carried out to study the possibility of producing special bakery products with low calories such as cakes and biscuits by using rich sources of dietary fiber, i.e wheat bran, carrot powder, resistant starch and their fractions through replacement of wheat flour (72% extraction) by different levels, (20, 30, 40 and 50%). The out were evaluated physically, organoleptically come products and biologically. The Results showed that dietary fiber contents of wheat bran and wheat bran (F2) showed the highest values (43.19 and 48.23%) respectively, followed by wheat bran (F1) 36.81% then resistant starch (F1 and F2). The physical properties showed that carrot powder and its fractions contained the highest values for swelling power and water holding capacity. The rheological study showed that addition of different sources of dietary fiber to wheat flour lead to increase the water absorption and dough development time, while the results of amylograph indicated that addition of all levels of fiber sources to wheat flour lead to decrease the maximum viscosity, addition of the different dietary fiber sources lead also to slight increase in weight and decrease in volume, so specific volume was decreased in sponge cake while the same additives decreased the diameter of biscuits. Sensory evaluation showed that addition of 20% of native and resistant starch (fractions F1, F2) to wheat flour for production of sponge cake and biscuit was found to be have no significant effect compared to control sample. Feeding of hypercholesterolemic rats on diets containing 20% of dietary fiber sources showed a decrease in body weight gain, total food intake and food efficiency. A slight increase was observed for organs weight compared to rats fed basal diet (negative control). The results also indicated that triglycerides, total cholesterol, LDL-cholesterol, total lipids, and liver function values were decreased. Also feeding of rats on diet contained 20% of resistant starch resulted in an improvement of absorption of Zn, Fe, Ca and Mg.

Keywords: Fiber. Dietary, Rats, Cake, Absorption, Resistant starch, Lipid profile

LIST O	F CON	TENTS
--------	-------	-------

			Page
1-	INTRODUCTION		1
2-	REVIEW OF LITERATURE		6
2.1	Chemical composition of raw material:		6
	2.1.1	Wheat flour	7
	2.1.2	Wheat bran	8
	2.1.3	Carrot	8
	2.1.4	Starch	10
	2.1.5	Dietary fiber	13
	2.1.5.1	Definition of dietary fiber	13
	2.1.5.2	Physic-chemical properties of dietary fiber	16
	2.2	Effect of fibers on health	19
2.2.1	Effect o	f dietary fibers and resistant starch on serum cholesterol,	19
	tri	glycerides, lipoprotein, glucose and weight loss	
	2.2.2	Influences of dietary fiber on mineral bioavailability	30
	2.2.3	Food Applications	32
3-	Materials and methods		40
3.1	Materia	ls	40
	3.1.1	1-Wheat bran	40
	3.1.2	2-Carrot	40
	3.1.3	3-Corn starch	40
3.2	Methods		41
	3.2.1	Preparation of wheat bran	41
	3.2.2	Preparation of carrot powder	41
	3.2.3	Preparation of resistant starch (RS)	41
3.3	Analytical methods		42
	3.3.1	Chemical composition of raw materials	42
	3.3.1.1	Determination of minerals	42
	3.3.1.2	Determination of amylose	42
	3.3.1.3	Determination of total dietary fiber (TDF)	43
	3.3.1.4	Determination of cellulose and hemicellulose:	45
	3.3.1.5	Determination of lignin	46
	3.3.1.6	Determination resistant starch	47

	222	Dhysical properties of new motorials	17
	3.3.2	Physical properties of raw materials	47
	3.3.2.1	Determination of swelling power	4/
	3.3.2.2	Determination of water holding capacity (WHC)	48
	3.3.2.3	Oil holding capacity (OHC)	48
	3.3.2.4	Determination of water retention	49
	3.3.3	Rheological properties	49
	3.3.3.1	Farinograph test	49
	3.3.3.2	Amylograph test	50
	3.3.4	Baking Techniques	50
	3.3.4.1	Preparation of Sponge cake	50
	3.3.4.2	Preparation of biscuits	52
	3.3.5	Physical characteristics of the produced cake and biscuits	53
	3.3.5.1	Cake	53
	3.3.5.2	Biscuits	54
3.3.6	Sensor	y Evaluation of Cakes and Biscuits	55
3.3.7	Determ	ination of staling rate of produced cake	57
3.3.8	Biologi	ical experimental	58
	3.3.8.1	Experimental Diet	58
	3.3.8.2	Experimental Design:	62
	3.3.8.3	Determination of total lipid	66
	3.3.8.4	Determination of serum cholesterol	67
	3.3.8.5	Determination of serum HDL-cholesterol	69
	3.3.8.6	Determination of serum triglycerides:	70
	3.3.8.7	Determination of serum LDL-cholesterol	72
	3.3.8.8	Determination of serum transaminases	72
	3.3.8.9	Determination of Serum Glucose	74
	3.3.9	Statistical analysis	76
4-	Results	and Discussion	77
	4.1	Fractionation and chemical composition of raw materials	77
	4.1.1	Fractions content of raw materials	77
	4.1.2	Chemical composition of raw materials	79
	4.1.3	Mineral of raw materials	81
	4.1.4	Dietary fiber fractions content of raw materials	83
	4.1.5	Physical characteristics of dietary fiber	85
	4.2	Effect of addition of dietary fibers sources to wheat flour	87

		on rheological properties	
	4.2.1	Effect of addition of dietary fiber sources to wheat flour	87
		on farinograph parameters:-	
	4.2.2	Effect of addition of dietary fiber sources to wheat flour	89
		on amylograph parameters	
	4.3	Physical characteristics of sponge cake prepared from	92
		wheat flour (72% ext.) containing different levels of	
		dietary fiber sources.	
	4.4	Effect of addition of different dietary fiber sources to wheat	94
		flour (72.1ext.) on sensory characteristics of sponge cake	
	4.5	Effect of replacement of different dietary fiber sources to	102
		wheat bran (72 % ext.) on sponge cake staling	
	4.6	Physical characteristics of biscuits	108
	4.7	Effect of addition of different dietary fiber sources to	111
		wheat flour (72% ext.) on sensory characteristics of	
		biscuits	
	4.8	Biological Experiments	118
	4.8.1	Body weight gain and food intake	118
	4.8.2	The effect of feeding difference sources of dietary fiber on	122
		organs weight of normal and hypercholesterolemic rats	
	4.8.3	Effect of feeding on different sources dietary fiber on total	124
		lipids triglycerides and total cholesterol	
	4.8.4	Effect of feeding on different sources dietary fiber on liver	133
		function	
	4.8.5	Effect of serum glucose	136
	4.8.6	Effect of feeding on different sources of dietary fiber	136
		(wheat bran, carrot powder and resistance starch) on	
		mineral bioavailability in rats	
5-		SUMMARY	141
6-		REFERENCES	148
		ARBIC SUMMARY	